CAPÍTULO 6 / TEMA 2

Interpretación de datos

La recopilación e interpretación de datos son aspectos claves de toda investigación. La estadística es la ciencia encargada de este proceso: reúne información concerniente a individuos o grupos, organiza dichos datos y los analiza e interpreta. Este análisis permite tomar decisiones y realizar predicciones útiles.

La encuesta

Una encuesta es una técnica que consiste en recopilar datos por medio de un cuestionario, el cual tiene preguntas prediseñadas. La encuesta se emplea al momento de estudiar un fenómeno, pues los datos obtenidos se suelen representar en gráficos o tablas para su interpretación.

Por lo general, la encuesta se aplica a una muestra de la población. Por ejemplo, imagina que quieres realizar una encuesta sobre el programa de televisión más visto en un país. Lo ideal sería que la encuesta fuera respondida por todas las personas de ese país, pero eso resulta casi imposible. Por esta razón, se toma una muestra de esa población que consiste en una porción más pequeña de personas para aplicar la encuesta. Así los datos obtenidos son una aproximación muy cercana a toda la población y su recopilación es mucho más fácil.

– Ejemplo:

La maestra preguntó a sus estudiante si preferían viajar a la playa o a la montaña y estos fueron los resultados que obtuvo:

Nombre Lugar preferido
María Playa
Mónica Playa
Samuel Montaña
Alfredo Playa
Ricardo Montaña
Melina Montaña
Pablo Playa
Rubén Playa
Araceli Playa
Sergio Montaña

De la tabla se observa que 6 estudiantes prefieren ir a la playa y 4 prefieren ir a la montaña. De manera que hay más estudiantes que prefieren la playa.

Importancia de las encuestas

Las encuestas son más usadas de lo que se piensas y las áreas que las aplican no se limitan a la estadística. La medicina, la sociología y la psicología son algunos de los campos en donde se hace uso de encuestas para recopilar información.

Promedio aritmético

Se denomina así porque corresponde al valor promedio de los datos. Es el resultado de sumar todos los datos que tenemos y luego dividirlos entre el número de datos.

– Ejemplo:

La maestra le preguntó a los niños cuántas mascotas tenían en sus casas y obtuvo los siguientes resultados:

Nombre Número de mascotas
María 2
Mónica 2
Samuel 3
Alfredo 1
Ricardo 1
Melina 2
Pablo 1
Rubén 2
Araceli 2
Sergio 4

 

Para calcular el promedio de mascotas que tienen los estudiantes se cumple la siguiente fórmula:

\boldsymbol{Promedio =\frac{Sumatoria \, de \, todos\, los\, datos}{Nro\, de \, datos}}

 

En este caso, si sumamos todos los datos obtenemos lo siguiente:

Sumatoria \, de \, todos\, los\, datos=2+2+3+1+1+2+1+2+2+4=\boldsymbol{\mathbf{}20}

 

El número de datos es igual a 10 (es el número de estudiantes en este caso).

Al sustituir en la fórmula se obtiene:

Promedio =\frac{20}{10} = \mathbf{2}

 

De esta manera, el promedio aritmético es 2, lo que nos indica que la mayoría de los estudiantes tienen como mínimo 2 mascotas.

¿Sabías qué?
En la estadística es más común hablar de media aritmética y no de promedio aritmético.
Uno de los cálculos usados a menudo en las empresas es el promedio. Aunque no siempre indica el valor real, permite por ejemplo, realizar estimaciones de las producciones por día, estimaciones de costos y proyecciones a futuro. Es importante tener presente que existen varios tipos de promedio además del aritmético y se emplean en otras situaciones.

Moda

Corresponde al valor del dato que más se repite. En el caso del ejemplo anterior la moda es 2 porque se repite más veces (5 veces):

Nombre Número de mascotas
María 2
Mónica 2
Samuel 3
Alfredo 1
Ricardo 1
Melina 2
Pablo 1
Rubén 2
Araceli 2
Sergio 4

¿Sabías qué?
La media, la moda y la mediana son denominadas medidas de tendencia central.

Combinaciones

Para realizar combinaciones de datos se suelen emplear tablas de doble entrada, conocidas también como cuadros de doble entrada, que permiten de forma gráfica registrar la información y sacar conclusiones.

Por ejemplo, un equipo de voleibol quiere saber cuál color usar en su logo, uniforme y balón oficial. Para ello la mayoría decidió que los colores deberían ser rojo, naranja o amarillo. Al completar la tabla de doble entrada obtuvieron los siguientes resultados:

El equipo tiene en total 9 posibilidades para elegir porque en la tabla son 3 colores y 3 objetos:

3\times 3=9

Si analizamos la tabla verticalmente observamos que por cada columna está el mismo objeto pero de diferente color. Si analizamos la tabla horizontalmente observamos diferentes objetos pero con el mismo color.

Los datos en una investigación

Antes de lanzar al mercado un nuevo producto o de aprobar una vacuna es necesario obtener datos que permitan interpretar si, por ejemplo, ese producto será comprado en las cantidades deseadas o si esa vacuna será segura para la salud. Por tal motivo, los datos que se recopilan juegan un papel fundamental en toda investigación, sin ellos no sería posible llegar a conclusiones o resultados. Su análisis es crucial en todas las áreas de la ciencia.

¡A practicar!

1. Se hizo una encuesta a unos músicos para saber cuántos instrumentos sabían tocar. Observa la siguiente tabla de resultado y responde las preguntas.

Nombre Número de instrumentos que sabe tocar
Carolina 3
Ezequiel 3
Francisco 5
Sofía 3
Victoria 4
Verónica 6
Diego 7
Luis 3
Tania 2
Andrés 4

a) ¿Cuál es el promedio aritmético?

Solución
4

b) ¿Cuál es la moda?

Solución
3

c) ¿Quién sabe tocar más instrumentos?

Solución
Diego

d) ¿Quién sabe tocar menos instrumentos?

Solución
Tania

 

2. Observa la siguiente tabla de doble entrada. ¿Cuántas combinaciones posibles observas?

Solución
4

 

RECURSOS PARA DOCENTES

Artículo “Instrumentos de medición”

Este artículo explica los principales instrumentos de medición usados en la estadística para recopilar datos como la encuesta y la entrevista.

VER

Artículo “Medidas de tendencia central”

Este artículo explica las medidas de tendencia central como la moda, media aritmética y la mediana, que permiten analizar un conjunto de datos y conocer la manera en la que se encuentra distribuidos.

VER

Artículo “Datos estadísticos”

Este artículo explica de manera concisa qué son los datos estadísticos y los diferentes tipos de muestreos usados con el propósito de obtenerlos.

VER

CAPÍTULO 1 / TEMA 5

SUCESIONES

Hacemos uso de las sucesiones al contar los días de la semana, del mes o del año. También al contar las horas del día o simplemente al contar los pasos para llegar a casa. Las sucesiones no son más que un conjunto de números organizados de un forma determinada. No solo las podemos encontrar con números, sino también con figuras.

Las primeras nociones sobre las sucesiones fueron propuestas por Fibonacci. A él se le ocurrió estudiar este concepto por medio de la relación que tenía con la reproducción de los conejos. ¡Sí! Los conejos se reproducen de forma sucesiva. Cada mes una hembra puede dar a luz, y por lo tanto, puede tener cientos de hijos al año.

¿QUÉ SON SUCESIONES?

Una sucesión es un conjunto de elementos ordenados de forma ascendente o descendente. Los elementos de este conjunto se denominan términos y estos siguen una regla, la cual permite calcular cada uno de ellos.

Las sucesiones pueden ser finitas o infinitas. Las sucesiones finitas tienen un número determinado de términos y las infinitas no tienen término final. Por ejemplo:

  • Sucesión finita = \boldsymbol{\left \{ 2,4,6,8,10 \right \}}
  • Sucesión infinita = \boldsymbol{\left \{ 3,6,9,12,15,18... \right \}}
¿Sabías qué?
Los puntos suspensivos (…) indican que la sucesión continua hasta el infinito.

Términos de una sucesión

Los términos de una sucesión se expresan con subíndices: a1, a2, a3, a4, a5, los cuales indican la posición de cada uno dentro de la secuencia, por ejemplo, el término a1 ocupa la primera posición de la secuencia, el término a2 corresponde al segundo lugar y así sucesivamente con cada uno.

Podemos calcular cada término de una sucesión de acuerdo a esta relación:

an = a0 + nr

Donde:

a0: término anterior al primero.

r: regla de la sucesión.

n: número de término.

– Ejemplo:

Podemos representar una sucesión por un término general o enésimo. En este caso su fórmula es:

an = −1 + n · (+3)

an = −1 + 3n

Observa que la regla de sucesión (r) es +3, por lo tanto, el término anterior al primero (t0) es igual a −1. Si queremos hallar el término a8 solo aplicamos la fórmula anterior:

a8 = −1 + 3 · 8 ⇒ a8 = −1 + 24 ⇒ a8 = 23

¿Cuáles son los términos?

Emplea la fórmula y determina cuáles son los términos a10, a12 y a15 de la secuencia anterior.

Solución

a10 = −1 + 3 · 10 ⇒ a10 = −1 + 30 ⇒ a10 = 29

a12 = −1 + 3 · 12 ⇒ a12 = −1 + 36 ⇒ a12 = 35

a15 = −1 + 3 · 15 ⇒ a15 = −1 + 45 ⇒ a15 = 44

Sucesión de Fibonacci

Una de las sucesiones conocidas más importantes es la de Fibonacci. Este tipo de secuencia lleva su nombre en honor al matemático italiano Leonardo Fibonacci y se caracteriza por el hecho de que cada número resulta de sumar los dos números anteriores a este. El término general de la misma es a_{n}= a_{n-1} + a_{n-2} y la forma más básica de este tipo de sucesión es: 1,1,2,3,5,8,13,21,34,55,89,144,233...

VER INFOGRAFÍA

SUCESIONES CON FIGURAS

No solo podemos encontrar sucesiones de números, también es posible encontrar sucesiones con diferentes figuras. Por ejemplo:

En ella se puede ver que las figuras están en orden ascendente con respecto a sus lados. Cada figura tiene un lado más que la anterior.

– Ejemplo 2:

También es posible conseguir sucesiones con figuras en distintas posiciones, como este ejemplo:

Como puedes ver en la imagen, todas las flechas tienen una dirección y sentido diferente, pero si te fijas con atención, el movimiento es igual al de las agujas del reloj, es decir, van en sentido horario. Este patrón nos permite saber cuál será la próxima figura en la sucesión:

Uno de los campeonatos más vistos es el Mundial de fútbol de la FIFA. En este, se clasifican 32 selecciones y, a medida que transcurre el torneo, se eliminan la mitad de los equipos en encuentros entre ellos. Así, comienzan 32, luego 16, 8, 4, 2, hasta que solo queda 1, el equipo campeón. Como ves, esta es una sucesión descendente en la que cada término es igual a la mitad del anterior.

SUCESIONES CON SUMAS Y RESTAS

Podemos construir sucesiones por medio de sumas, restas o la combinación de ambas operaciones. Por ejemplo:

– Otro ejemplo:

En la sucesión anterior, a medida que disminuye el número en cada término, la resta entre el término siguiente y el anterior aumenta.

Algunas aplicaciones

Debido a lo práctico que resulta expresar en forma general una secuencia ordenada de números, las sucesiones matemáticas han sido aplicadas en muchas disciplinas además de la matemática. Por ejemplo, la sucesión de Fibonacci se ha aplicado en la arquitectura, el arte y la informática.

Las progresiones son un tipo de sucesiones que se utilizan para realizar diversos cálculos como la determinación del interés compuesto. Las progresiones aritméticas también se usan en las interpolaciones, que consisten en calcular valores que se encuentran entre dos dados.

¡A practicar!

1. Consigue la regla de la sucesión en cada caso.

  • {2, 4, 6, 8, 10, 12, 14}
Solución

  • {45, 44, 42, 39, 35, 30, 24, 17, 9} 
Solución

2. ¿Cuál es la imagen que falta?

Solución

3. ¿Cuáles son las figuras que deben ir en los espacios en gris?

Solución

4. Selecciona cuál de las imágenes del segundo bloque es la que corresponde al cuadrado que falta en el primer bloque.

Solución

5. Calcula el término a25 de la siguiente sucesión:

{23, 27, 31, 35, 39}

Solución
  • Datos:

a0 = 19

r = +4

  • Término enésimo:

an = 19 + n · (+4)

an = 19 + 4n

  • Resultado:

a25 = 19 + 4 · 25

a25 = 19 + 100

a25 = 119  

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

Este artículo lo ayudará a complementar la información sobre las sucesiones.

VER

Artículo “Sucesiones y series”

Con este artículo podrá ampliar los conocimiento sobre las series y sucesiones.

VER

 

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

Unidades y medidas | ¿Qué aprendimos?

Unidades de medición

Existen diferentes magnitudes físicas como la longitud, el área, el volumen y el tiempo que emplean unidades de medidas particulares. En el caso de la longitud, mide la distancia entre dos puntos; el área mide la superficie; el volumen mide el espacio y el tiempo mide la duración de un suceso. Desde 1960 se creó el Sistema Internacional de Unidades que busca que todos los países usen las mismas unidades de medición: el metro, el kilogramo, el metro cuadrado, el metro cúbico, el segundo, etc.

Los mayas usaban su propio calendario para medir el tiempo y planificar sus cosechas.

Instrumentos de medición

Medir es comparar con base en un patrón, de manera que para poder medir usamos instrumentos que se encuentran calibrados y presentan ciertas características como el rango de medición que soportan y que se indica en su cota superior e inferior. Algunos ejemplos de instrumentos que se usan en la escuela son la regla, la escuadra y el transportador. Los dos primeros miden longitudes y el último mide tamaños de ángulos.

Las reglas que usamos en la escuela generalmente vienen graduadas en centímetros y milímetros.

El tiempo

Para medir el tiempo usamos los relojes y cronómetros. Los relojes pueden ser análogos cuando emplean manecillas o digitales cuando no las emplean. La lectura del tiempo en estos casos se realiza de diferente manera. En un reloj analógico, la esfera se encuentra dividida en 12 horas que a su vez también presenta su división en minutos. Por otro lado, el formato de 24 horas es un sistema de medición que divide el día en 24 horas y comienza a partir de la medianoche hasta la medianoche siguiente.

Existen otras unidades de tiempo, como el día, la semana, el año, el lustro, la década, el siglo y el milenio.

Conversión de unidades

En el mundo existen diferentes unidades de medidas que pueden estar o no relacionados. Esto sucede con el metro, unidad usada para medir longitudes. El metro presenta submúltiplos como el decímetro, el centímetro y el milímetro; y múltiplos como el kilómetro, el hectómetro y el decámetro. Por medio de diagramas podemos transformar unidades de acuerdo a la relación que existan entre ellas, por ejemplo, las unidades de longitud y de capacidad aumentan de 10 en 10 y las de tiempo (segundo, minuto y hora) aumentan de 60 en 60.

El sistema para medir el tiempo es sexagesimal porque cada unidad es 60 veces menor que la anterior.

CAPÍTULO 1 / TEMA 7

RELACIONES

LOS NÚMEROS NATURALES SON LOS QUE USAMOS PARA CONTAR, POR EJEMPLO, LA CANTIDAD DE JUGUETES QUE TENEMOS O LAS HORAS QUE FALTAN PARA SALIR A JUGAR. TODOS ELLOS TIENEN UNA RELACIÓN CON LOS DEMÁS NÚMEROS. PARA ESCRIBIR ESTAS RELACIONES USAMOS ALGUNOS SÍMBOLOS ESPECIALES QUE APRENDERÁS HOY.

RELACIONES ENTRE NÚMEROS

TODOS LOS NÚMEROS NATURALES TIENEN UNA RELACIÓN. EN LA IMAGEN VEMOS UN ORDEN DE 1 EN 1 PORQUE CADA NÚMERO A LA DERECHA TIENE UNA UNIDAD MÁS QUE EL ANTERIOR. SI QUEREMOS SABER QUÉ NÚMERO ES MAYOR O MENOR QUE OTRO PODEMOS UTILIZAR UNA RECTA NUMÉRICA. MIENTRAS MÁS A LA DERECHA DE LA RECTA ESTÉ EL NÚMERO, MAYOR SERÁ SU VALOR.

HAY NÚMEROS QUE REPRESENTAN MÁS CANTIDAD QUE OTROS Y POR LO TANTO, TAMBIÉN HAY NÚMEROS QUE REPRESENTAN MENOS CANTIDAD QUE OTROS. ESTA RELACIÓN SE LLAMA ORDEN Y LA USAMOS CADA VEZ QUE CONTAMOS O COMPARAMOS CIFRAS.

ENTRE DOS NÚMEROS, UNO PUEDE SER MAYOR QUE OTRO, IGUAL A OTRO O MENOR QUE OTRO. CADA RELACIÓN TIENE UN SÍMBOLO ÚNICO PARA QUE PUEDAS DIFERENCIARLO.

MAYOR QUE

CUANDO ESCRIBIMOS NÚMEROS PODEMOS VER QUE UNOS REPRESENTAN MÁS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS CANGREJOS HAY EN LA CAJA ROJA?

HAY 24 CANGREJOS.

  • ¿CUÁNTO CANGREJOS HAY EN LA CAJA AZUL?

HAY 12 CANGREJOS.

  • ¿CUÁL CAJA TIENE MAYOR CANTIDAD DE CANGREJOS?

LA CAJA ROJA TIENE MAYOR CANTIDAD DE CANGREJOS PORQUE 24 ES MAYOR QUE 12.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO > QUE SIGNIFICA “MAYOR QUE”.

24 > 12

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 24 ES MAYOR QUE 12 PORQUE SE ENCUENTRA MÁS A LA DERECHA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MAYOR?

365            357

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 365 ESTÁ MÁS A LA DERECHA EN LA RECTA, 365 ES MAYOR QUE 357. ENTONCES:

365 > 357

¡A ORDENAR NÚMEROS!

ORDENA DE MAYOR A MENOR ESTOS NÚMEROS. USA EL SÍMBOLO “MAYOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

125 – 89 – 856 – 632

SOLUCIÓN

856 > 632 > 125 > 89

IGUAL QUE

ES POSIBLE QUE DOS CANTIDADES SEAN IGUALES. POR EJEMPLO:

  • CADA CAJA TIENE CARACOLAS MARINAS, ¿CUÁNTAS HAY EN LA CAJA ROJA?, ¿CUÁNTAS HAY EN LA CAJA AZUL?

EN LAS DOS CAJAS HAY LO MISMO: 15 CARACOLAS MARINAS.

 

CUANDO DOS NÚMEROS SON IGUALES USAMOS EL SÍMBOLO = QUE SIGNIFICA “IGUAL A “.

15 = 15

EL SÍMBOLO DE IGUALDAD TAMBIÉN SIRVE PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTROS. EJEMPLO:

15 = 10 + 5

15 = 5 + 5 + 5

15 = 2 + 3 + 2 + 3 + 2 + 3

SI BUSCAMOS REPRESENTAR LA IGUALDAD EN UNA RECTA NUMÉRICA, LOS DOS NÚMEROS SERÁN REPRESENTADOS EN EL MISMO LUGAR.

¡COMPAREMOS NÚMEROS!

INDICA SI ESTAS IGUALDADES SON CORRECTAS:

  • 543 = 500 + 40 + 3
SOLUCIÓN
CORRECTO.
  • 123 = 10 + 2 + 3
SOLUCIÓN
INCORRECTO. LA DESCOMPOSICIÓN ADITIVA DE 123 = 100 + 20 + 3.

LA IGUALDAD

SIEMPRE QUE DOS EXPRESIONES SEAN IGUALES DECIMOS QUE HAY UNA IGUALDAD MATEMÁTICA. EL SIGNO USADO ES =. ESTE SIGNO FUE CREADO POR ROBERT RECORDE EN 1557. ÉL USÓ DOS RECTAS PARALELAS PARA REPRESENTARLO.

MENOR QUE

ALGUNOS NÚMEROS REPRESENTAN MENOS CANTIDADES QUE OTROS. POR EJEMPLO:

  • ¿CUÁNTOS PECES HAY EN LA CAJA ROJA?

HAY 18 PECES.

  • ¿CUÁNTOS PECES HAY EN LA CAJA AZUL?

HAY 21 PECES.

  • ¿CUÁL CAJA TIENE MENOR CANTIDAD DE PECES?

LA CAJA ROJA TIENE MENOR CANTIDAD DE PECES PORQUE 18 ES MENOR QUE 21.

 

ESTA RELACIÓN ENTRE DOS NÚMEROS LA PODEMOS ESCRIBIR CON EL SÍMBOLO QUE SIGNIFICA “MENOR QUE”.

18 < 21

SI UBICAMOS CADA NÚMERO EN LA RECTA NUMÉRICA TENEMOS QUE:

EL NÚMERO 18 ES MENOR QUE 21 PORQUE SE ENCUENTRA MÁS A LA IZQUIERDA EN LA RECTA NUMÉRICA.


OTRO EJEMPLO:

OBSERVA ESTOS NÚMEROS, ¿CUÁL ES MENOR?

433            448

PARA RESPONDER LA PREGUNTA DEBEMOS REPRESENTAR EN LA RECTA NUMÉRICA CADA NÚMERO Y COMPARARLOS:

COMO EL 433 ESTÁ MÁS A LA IZQUIERDA EN LA RECTA, 433 ES MENOR QUE 448. ENTONCES:

433 < 448

¿SABÍAS QUÉ?
LA ABERTURA DE LOS SÍMBOLOS < Y > SIEMPRE IRÁ HACIA EL NÚMERO MAYOR, Y LA PUNTA IRÁ HACIA EL NÚMERO MENOR.

¡A ORDENAR NÚMEROS!

ORDENA DE MENOR A MAYOR ESTOS NÚMEROS. USA EL SÍMBOLO “MENOR QUE” PARA REPRESENTAR LA RELACIÓN ENTRE CADA UNO DE ELLOS.

489 – 511 – 263 – 384

SOLUCIÓN

263 < 384 < 489 < 511

LOS SÍMBOLOS DE RELACIÓN SIRVEN PARA QUE COMPAREMOS CANTIDADES. ES POSIBLE QUE NO NOS DEMOS CUENTA, PERO SIEMPRE LOS USAMOS. POR EJEMPLO, MIENTRAS MÁS AÑOS TENEMOS, MÁS ALTOS SOMOS. SI MARCAMOS EN LA PARED NUESTRA ESTATURA VEREMOS QUE CADA AÑO LA MEDIDA ES MAYOR QUE LA ANTERIOR, O VISTO DE OTRO MODO, QUE LA ESTATURA ANTERIOR ES MENOR QUE LA ACTUAL.

 

¡A PRACTICAR!

1. COLOCA EL SÍMBOLO DE RELACIÓN QUE CORRESPONDA:

  • 64 ___ 89
SOLUCIÓN
64 < 89 
  • 159 ___ 685
SOLUCIÓN
159 < 685
  • 745 ___ 700 + 40 + 5
SOLUCIÓN
745 = 700 + 40 + 5
  • 4 + 40 ___ 20 + 7
SOLUCIÓN
4 + 40 = 44 > 27 = 20 + 7
  • 999 ___ 654
SOLUCIÓN
999 > 654
  • 80 + 4 ___ 84
SOLUCIÓN
80 + 4 = 84

 

2. ESCRIBE SI LA RELACIÓN ES VERDADERA O FALSA.

  • 5 = 8
SOLUCIÓN
FALSO. 5 < 8
  • 85 < 85
SOLUCIÓN
FALSO. 85 = 85
  • 196 < 852
SOLUCIÓN
VERDADERO.
  • 458 > 655
SOLUCIÓN
FALSO. 458 < 655
  • 351 < 536
SOLUCIÓN
VERDADERO.
  • 758 = 663
SOLUCIÓN
FALSO. 758 > 663

 

3. ORDENA DE MENOR A MAYOR:

78 – 96 – 499 – 164 – 8 – 968 – 781 – 63 – 19 – 82

SOLUCIÓN
8 < 19 < 63 < 78 < 82 < 96 < 164 < 499 < 781 < 968
RECURSOS PARA DOCENTES

Artículo “Comparar y ordenar números”

En el siguiente artículo hay más ejercicios para la práctica de la relación de números: mayor que y menor que.

VER

CAPÍTULO 1 / TEMA 2

NÚMEROS PRIMOS Y COMPUESTOS

Podemos clasificar los números según distintos criterios, y uno de esos es la cantidad de divisores que tengan. Si un número tiene solo dos divisores, el uno y él mismo, decimos que ese número es primo; en cambio, si el número tiene más de dos divisores, a ese número lo llamamos compuesto.

CARACTERÍSTICAS DE LOS NÚMEROS PRIMOS Y COMPUESTOS

Números primos

Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. Por ejemplo, el número 13 es un número primo porque solo es divisible por el número 1 y por el número 13.

Además, los números primos no pueden formarse como producto de la multiplicación de otros dos factores que no sean el 1 y el mismo número. Por ejemplo, el número 7 solo puede formarse al multiplicar 7 × 1 = 7.

Divisibilidad

Un número es divisible por otro cuando al efectuar la operación de división entre ellos el resto es cero.

  • El 12 es divisible por 2 porque el resto de la división en 0.
  • El 13 no es divisible por 2 porque el resto de la división no es 0.

El número 12 es divisible por 1, 2, 3, 4, 6 y 12.

Números compuestos

Los números compuestos son aquellos que aparte de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números. Por ejemplo, el número 4 es un número compuesto porque tiene tres divisores: 1, 2 y 4.

A su vez, los números compuestos pueden ser formados como productos de la multiplicación de otros dos factores. Por ejemplo, el número 10 puede ser formado por la multiplicación de 5 x 2 = 10.

¿Sabías qué?
El número 1 no es primo ni compuesto ya que solo puede dividirse por sí mismo.
Los números primos solo son divisibles por el uno y por sí mismos, mientras que los números compuestos, además de ser divisibles por uno y por sí mismos, también pueden ser divididos por otro u otros números. No obstante, hay un número que no cumple con estas características: el uno. El número 1 no es primo ni compuesto.

CRIBA DE ERATÓSTENES

Es un procedimiento para identificar los números primos. La podemos elaborar de la siguiente manera:

  1. Comenzamos desde el número 2, que es el primer número primo, por lo tanto no lo vamos a tachar. Pero sí eliminamos todos los siguientes múltiplos de 2: 4, 6, 8, 10, 12,…
  2. El siguiente primo es el 3, así que debemos tachar todos los múltiplos de este número: 6, 9, 12, 15…
  3. En esta instancia, ya tenemos gran parte de los números eliminados. Podemos observar que el siguiente número que aparece sin tachar es el 5, que sería el siguiente primo. Entonces, tachamos los múltiplos de 5 que aparecen a continuación: 5, 10, 15, 20…
  4. Del mismo modo procedemos con el 7.
  5. El siguiente número que aparece sin eliminar es el 11, pero… ¡Todos sus múltiplos están tachados! Por ello, aquellos números que han quedado sin descartar en esta instancia son los primos.

Observa que los números resaltados son los primos y los tachados son los compuestos.

¿Sabías qué?
El 2 es el único número primo que es par.
¡A practicar!

Marca con una circunferencia los números que sean primos:

Solución

EXPRESIÓN DE NÚMEROS EN FACTORES PRIMOS

Todos los números compuestos pueden representarse como producto de una multiplicación de 2 o más factores primos. Esto se conoce comúnmente como factorización en números primos, o factorización de números compuestos.

Así como podemos representar cualquier número como una suma (por ejemplo: 5 = 2 + 3) o como una resta (por ejemplo 5 = 7 − 2), también podemos descomponer un número compuesto por medio de una multiplicación de sus números primos.

Recuerda que:

  • Factor: es el número que multiplica.
  • Producto: es el resultado de una multiplicación.

Pasos para factorizar en números primos

  1. Escribe el número compuesto que se quiere expresar en factores primos y a su derecha traza una semirrecta vertical.
  2. Pon a la derecha de la semirrecta el número primo más pequeño que sea divisor, es decir, que pueda dividir de forma exacta el número compuesto elegido.
  3. Escribe el cociente de la división anterior debajo del número compuesto elegido y a su derecha, del otro lado de la semirrecta, escribe el número primo más pequeño que sea divisor de este último.
  4. Repite el procedimiento la cantidad de veces que sean necesarias hasta obtener el número 1 como cociente.

– Ejemplo:

Expresa el número 36 como producto de sus factores primos.

El número compuesto 36 se expresa como producto de factores primos así: 2 x 2 x 3 x 3.

Observa que también podemos expresar los factores primos como una potencia, de este modo, 2 × 2 = 22 y 3 × 3 = 32.

¡A practicar!

Expresa los siguientes números como productos de factores primos:

  • 12
  • 40
  • 64
Solución

CRITERIOS DE DIVISIBILIDAD

Los criterios de divisibilidad son reglas que nos permiten reconocer si un número es divisible por otro sin necesidad de hacer la división. Es decir, por medio de la observación de las características de un número podemos darnos cuenta si se puede dividir o no por otro número determinado.

Todo número tiene sus múltiplos, de la misma manera, también tiene sus divisores; estos son números que lo dividen de forma exacta, es decir, que al hacer la operación el cociente es un número exacto y el resto es cero. Por ejemplo, 2 es divisor de 8 y 3 es divisor de 6 porque al calcular 2 : 8 = 4 y 6 : 3 = 2, el resto es cero en ambos casos.

 

Cada número tiene un criterio de divisibilidad distinto. En la siguiente tabla están desde el 2 hasta el 10:

Número Criterio Ejemplos
2 Un número es divisible por 2 si es un número par. 6

8

125.972

Son números pares.

3 Un número es divisible por 3 si la suma de sus cifras da como resultado un número múltiplo de 3. 93 porque 9 + 3 = 12 y 12 es múltiplo de 3.

 

123 porque 1 + 2 + 3 = 6 y 6 es múltiplo de 3.

4 Un número es divisible por 4 si las 2 últimas cifras del número forman un múltiplo de 4 o si son dos ceros. 140 porque 40 es múltiplo de 4.

 

33.624 porque 24 es múltiplo de 4.

 

700 porque termina con dos ceros.

5 Un número es divisible por 5 si su última cifra es un 0 o un 5. 495 porque termina en 5.

 

874.280 porque termina en 0.

6 Un número es divisible por 6 si es divisible por 2 y por 3 a la vez. 12 porque es divisible por 2 y por 3 a la vez.

 

150 porque es divisible por 2 y por 3 a la vez.

7 Un número es divisible por 7 si al restar el doble de la unidad a el resto de la cantidad sin la última cifra el resultado es 0 o un múltiplo de 7. 91 porque 9 −2 = 7 y 7 es múltiplo de 7.

 

105 porque 10 − 10 = 0.

 

182 porque 18 − 4 = 14 y 14 es múltiplo de 7.

8 Un número es divisible por 8 si sus 3 últimas cifras forman un múltiplo de 8 o son tres ceros. 25.200 porque 200 es múltiplo de 8.

 

9.000 porque sus últimas 3 cifras son tres ceros.

9 Un número es divisible por 9 si la suma de sus cifras da como resultado un número múltiplo de 9. 99 porque 9 + 9 = 18 y 18 es múltiplo de 9.

 

207 porque 2 + 0 + 7 = 9 y 9 es múltiplo de 9.

10 Un número es divisible por 10 si su última cifra es un 0. 1.235.250 porque termina en 0.

 

2.000 porque termina en 0.

 

¡A practicar!

1. Expresa los siguientes números como productos de factores primos:

  • 98
  • 60
  • 18
  • 36
Solución

2. Indica si las siguientes afirmaciones son verdaderas o falsas.

  • 161 es divisible por 7.
Solución
Verdadero.
  • 222 es divisible por 3.
Solución
Verdadero.
  • 523 es divisible por 5.
Solución
Falso.
  • 234 es divisible por 9.
Solución
Verdadero.
  • 10.001 es divisible por 10.
Solución
Falso.
  • 32 es divisible por 6.
Solución
Falso.
  • 500 es divisible por 4.
Solución
Verdadero.
RECURSOS PARA DOCENTES

Artículo destacado “Números primos y compuestos”

El siguiente artículo te permitirá ampliar la noción de números primos y compuestos.

VER

Artículo destacado “Criterios de divisibilidad”

El siguiente artículo profundiza en las explicaciones sobre los criterios de divisibilidad.

VER

CAPÍTULO 4 / TEMA 2

Instrumentos de medición

Si hay algo que los seres humanos hemos necesitado desde siempre es tomar mediciones: las personas medimos desde las raciones de comida, hasta los grandes territorios. Los instrumentos de medición permiten conocer las cantidades de diferentes magnitudes como la longitud, el volumen, el tiempo, etc. Las unidades de medida son una referencia y pueden ser convencionales o no.

Características de los principales instrumentos de medición

Un instrumento de medición presenta las siguientes características:

  • Cota inferior: corresponde al valor mínimo de la magnitud que puede medir el instrumento.
  • Cota superior: corresponde al valor máximo que puede medir el instrumento.
  • Sensibilidad: corresponde a la mínima variación de la magnitud que puede detectar el instrumento.
  • Exactitud: corresponde a la capacidad del instrumento de acercarse al valor real de la magnitud leída.
  • Fiabilidad: corresponde a qué tan consistente sea la medición del instrumento, es decir, que el instrumento pueda medir la misma cantidad en las mismas condiciones y en diferentes ocasiones.
El termómetro de mercurio es un instrumento que en la actualidad comienza a estar en desuso en el área de la salud por los riesgos de toxicidad, sin embargo, en el pasado era usado para medir la temperatura corporal. Su cota inferior suele ser de 35 °C y su cota superior suele estar en los 42 °C. Quiere decir que puede medir valores entre esas dos temperaturas.

Calidad de medición

Hay instrumentos con mayor precisión y sensibilidad que otros, por lo tanto presentan mayor exactitud. Por ejemplo, las balanzas se usan para medir la masa de los cuerpos. En un mercado se usan balanzas convencionales con una cota inferior de 1 gramo y en lugares como laboratorios y fábricas pueden usar balanzas tan sensibles que permiten obtener lecturas muy pequeñas como 0,00001 g.

Para que tengas una idea, la masa de un grano de arroz es de 0,03 gramos y las balanzas de un laboratorio pueden medir cantidades 1.000 veces menores que eso, ¡increíble!

VER INFOGRAFÍA

Instrumentos de medición comunes en la escuela

En la escuela solemos usar instrumentos para medir longitudes de las cosas, como la regla o una escuadra. La longitud es una magnitud que permite medir distancias entre dos puntos, con ella podemos medir el tamaño de una recta o el de los lados de una figura geométrica.

Las reglas y escuadras que usamos en la escuela tienen una escala graduada en centímetros y milímetros. Cada centímetro está dividido en milímetros. Pueden estar construidas de materiales como metal, plástico o madera y pueden ser flexibles o rígidas. Las escuadras además de medir longitudes sirven para construir rectas paralelas y perpendiculares.

 

Otro instrumento de medición usado en la escuela es el transportador, que sirve para medir ángulos, presenta su escala en grados y es muy usado en disciplinas como la arquitectura y el dibujo técnico.

¿Sabías qué?
Hay dos tipos de transportador, el circular que se encuentra graduado de 0° a 360° y el semicircular que está graduado de 0° a 180°.

Cuando usamos el reloj, medimos el tiempo que ha transcurrido. Las unidades de tiempo se expresan en segundos minutos y horas. Hay otros instrumentos de medición de tiempo como el cronómetro, por ejemplo, que suele ser usado por los entrenadores para evaluar el desempeño de los deportistas.

Unidades de medidas no convencionales

Todas las unidades de medida son una referencia para medir la cosas. Hay unidades convencionales que se usan en gran parte del mundo, como el metro para medir la longitud o el segundo para medir el tiempo, pero también hay otras que podemos usar para medir de una manera menos convencional y que nos permiten establecer comparaciones, como nuestras manos, dedos o pies.

Podemos usar nuestra mano como unidad de medida para medir la longitud de un cuaderno, simplemente tenemos que ver cuántas veces ese patrón de medida se encuentra en el objeto. Incluso podemos usar otros objetos como un lápiz como referencia de medida. En este caso se habla de unidades no convencionales porque no pertenecen al Sistema Internacional de Unidades.

Por ejemplo:

– El cuaderno mide dos manos y media.
– El lápiz mide seis dedos.

La pulgada y los reyes

A lo largo de la historia se ha usado la pulgada como unidad de longitud. La pulgada era empleada por los monarcas, quienes empleaban la medida desde el nudillo del pulgar hasta el extremo del dedo. Este sistema de medida tuvo muchos inconvenientes porque no todos los reyes tenían el mismo tamaño de falanges, y existían pulgadas de diferentes medidas, lo que generaba confusión.

Por razones como esas, los sistemas de medición se unificaron en sistemas más homogéneos como el Sistema Internacional de Medidas. En la actualidad hay países como Estados Unidos que aún emplean la pulgada como medida de longitud que equivale a 2,54 cm.

¡A practicar!

1. ¿Cómo se denomina al máximo valor que puede medir un instrumento de medición?

a) Cota inferior.

b) Sensibilidad.

c) Cota superior.

d) Confiabilidad.

Solución
c) Cota superior.

2. ¿Cuál es una medida no convencional?

a) El metro.

b) El segundo.

c) El centímetro.

d) El dedo.

Solución
d) El dedo.

3. ¿Qué podemos medir con las unidades de longitud?

a) La distancia entre dos puntos.

b) La capacidad de un recipiente.

c) El tiempo.

d) La temperatura de una persona.

Solución
a) La distancia entre dos puntos.

4. Observa los siguientes instrumentos de medición y determina qué podemos medir con cada uno.

a) 

Solución
La longitud.

b) 

Solución
El tiempo.

c)

Solución
La medida de ángulos.

d) 

Solución
La masa.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de unidades”

Este artículo explica qué es el Sistema Internacional de unidades y describe sus principales unidades básicas y derivadas, así como su importancia en la actualidad.

VER

Tarjetas educativas “Instrumentos de laboratorio”

Este micrositio muestra los principales instrumentos de laboratorio, dentro de los cuales se encuentran varios instrumentos de medición.

VER

Infografía “Balanza”

Esta infografía muestra uno de los instrumentos de medición más usados: la balanza. También describe sus tipos y sus características principales.

VER

CAPÍTULO 4 / TEMA 1

RECTA NUMÉRICA

Todos los números representan una determinada cantidad. Por ejemplo, con $ 100 no compramos lo mismo que podemos comprar con $ 1.000, porque esas cantidades de dinero son distintas. Por ese motivo es de gran importancia saber cómo comparar cifras, y una herramienta muy útil para hacerlo es la recta numérica: una línea recta que tiene puntos con valores específicos.

¿Qué es la recta numérica?

La recta numérica es una herramienta en la que podemos representar de manera gráfica distintos números. Consiste en una línea recta marcada a intervalos regulares, a los cuales se le asigna un número. Estos intervalos no son más que las separaciones entre un número y otro.

Las rectas numéricas pueden incluir cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). En este ejemplo, la recta numérica abarca los números enteros (\mathbb{Z}) desde el −7 hasta el +7, incluido el cero (0).

¿Sabías qué?
El primero en utilizar una recta numérica fue el matemático inglés John Wallis. Él la utilizó para representar gráficamente los números naturales (\mathbb{N}). 
Una regla graduada es muy parecida a una recta numérica. Este instrumento de medición tiene divisiones con valores asignados en centímetros o pulgadas. Gracias a ella sabemos la longitud de objetos pequeños, como la de un lápiz o un borrador. Además nos ayuda a dibujar líneas rectas.

¿Cómo construir una RECTA NUMÉRICA?

Para construir una recta numérica lo primero que debemos hacer es trazar una línea recta con flechas en sus extremos.

Luego colocamos los intervalos y marcamos sus extremos con un punto o con una pequeña línea vertical. Es importante que todos los intervalos sean del mismo tamaño para conservar la escala.

Una vez trazada la línea recta y los intervalos, colocamos los números sobre cada una de las pequeñas líneas verticales. Los números irán de menor a mayor, de izquierda a derecha.

Intervalos en la recta numérica

Los intervalos utilizados para construir una recta numérica deben ser siempre iguales entre un número y su consecutivo, pero pueden variar en cuanto a su valor.

Por ejemplo, podemos construir una recta numérica en la que cada intervalo entre un número y su consecutivo corresponda a un entero, es decir, de 1 en 1:

Pero también podemos construir rectas numéricas en las que cada intervalo corresponda a dos enteros, es decir, de 2 en 2:

¿Qué números se pueden incluir en una recta numérica?

Si bien, en un principio solo se ubicaban números naturales en la recta numérica (desde el cero hasta el infinito positivo), hoy día todos los números reales \mathbb{R} pueden representarse en ella. Estos incluyen a los números naturales (\mathbb{N}), los números enteros (\mathbb{Z}), los números racionales (\mathbb{Q}) y los números irracionales (\mathbb{I}).

Representación de decimales y fracciones en la recta numérica

Los números decimales son aquellos formados por una parte entera y una parte menor a la unidad, y también pueden ser mostrados como fracciones. En la recta numérica podemos representar este tipo de números si subdividimos los enteros ya ubicados. Por ejemplo, entre 1 y 2 hay pequeños intervalos más pequeños que señalan a los decimales desde el 0,1 hasta el 0,9. También podemos mostrarlos en escalas de 2 en 2 décimas. Observa esta recta:

Dado que para cada fracción hay un número decimal equivalente, podemos representar ambas cantidades en una recta numérica. Por ejemplo, las fracción 1/5 = 0,2 y 8/5 = 1,6. 

¡A practicar!

Realiza una recta numérica y luego marca en la misma los siguientes números:

  • 0
  • 2
  • 2,8
  • 4/5
Solución

SÍMBOLOS DE RELACIÓN

Los números de la recta numérica tienen relaciones entre sí. Los distintos tipos de relaciones que existen son los siguientes.

TIPO DE RELACIÓN SIGNIFICADO SÍMBOLO
“Mayor que” Se utiliza para indicar que un número es mayor que otro. >
“Igual a” Se utiliza para indicar que un número es igual a otro. =
“Menor que” Se utiliza para indicar que un número es menor que otro. <

Veamos algunos ejemplos:

  • Para indicar que el 3 es mayor que el 2, escribimos: 3 > 2
  • Para indicar que el 4 es igual que el 4, escribimos: 4 = 4
  • Para indicar que el 5 es menor que el 8, escribimos: 5 < 8

 

Todos los números tienen algún otro número mayor que él y otro menor. Todos los números guardan una relación con los demás. Para compararlos podemos utilizar los símbolos de relación, los cuales muestran cuando entre dos cantidades la primera es mayor que la segunda (>), menor que la segunda (<) o igual a la segunda (=).

 

Relaciones entre los números de la recta numérica

Si prestamos atención, notaremos que en una recta numérica siempre ocurre lo siguiente: entre dos números, el que se encuentra más a la derecha en la recta numérica será el mayor.

Por ejemplo, entre el 3 y el −5, el 3 se encuentra más a la derecha, entonces, podemos afirmar que 3 > −5. O al encontrarse el −5 más a la derecha que el −7, podemos afirmar que −5 > −7.

¡A practicar!

Coloca el símbolo de relación que corresponda en cada caso:

  • 3,5 ____ 5,3
  • 4,0 ____ 0,4
  • 1 ____ −1
  • 2 ____ 2
  • 2,2 ____ 2,02
  • 8,001 ____ 8,01
Solución
  • 3,5 < 5,3
  • 4,0 > 0,4
  • > −1
  • 2 = 2
  • 2,2 > 2,02
  • 8,001 < 8,01

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo te permitirá profundizar sobre el concepto de recta numérica y los conjuntos numéricos que pueden ser representados en la misma.

VER

Artículo “Recta numérica”

En este artículo podrás detallar el procedimiento a realizar para poder ubicar números decimales y fracciones en la recta numérica.

VER

CAPÍTULO 1 / TEMA 2

VALOR POSICIONAL

EL HOMBRE SIEMPRE HA TENIDO LA NECESIDAD DE CONTAR Y POR ESO INVENTÓ LOS SISTEMAS DE NUMERACIÓN. NOSOTROS USAMOS EL SISTEMA DECIMAL QUE SOLO TIENE DIEZ CIFRAS CON LAS QUE PODEMOS FORMAR CUALQUIER CANTIDAD DE NÚMEROS. PERO ¿CÓMO HACERLO? DEBEMOS SABER EL VALOR DE CADA CIFRA DENTRO DEL NÚMERO, ES DECIR, SU VALOR POSICIONAL.

ESTOS DIEZ DÍGITOS FORMAN NUESTRO SISTEMA DECIMAL Y CON ELLOS FORMAMOS MUCHOS NÚMEROS. ¿LOS HAS USADO? ¡SEGURO QUE SÍ! USAMOS LA COMBINACIÓN DE ESTAS CIFRAS PARA DAR UN NÚMERO DE TELÉFONO, LA FECHA DE NUESTRO CUMPLEAÑOS, EL NÚMERO DE IDENTIFICACIÓN O  PARA CONTAR LA CANTIDAD DE JUGUETES QUE TENEMOS.

¿QUÉ ES EL VALOR POSICIONAL?

ES EL VALOR QUE TIENE UNA CIFRA SEGÚN SU POSICIÓN EN EL NÚMERO. ESTAS POSICIONES TIENEN UN NOMBRE Y PUEDEN SER UNIDADES, DECENAS O CENTENAS. OBSERVA Y RESPONDE:

1. ¿CUÁNTOS CUADRADOS HAY?

HAY 1 CUADRADO.

1 = 1 UNIDAD

 

2. ¿CUÁNTAS TIRAS HAY?

HAY 10 TIRAS.

10 UNIDADES = 1 DECENA

 

3. ¿CUÁNTOS CUADRADOS HAY?

HAY 100 CUADRADOS.

100 UNIDADES = 1 CENTENA

 

¿CUÁNTAS UNIDADES HAY?

OBSERVA LAS IMÁGENES Y CUENTA LAS UNIDADES.

1. 

SOLUCIÓN

HAY 2 CENTENAS.

2 VECES 100 = 200 UNIDADES

HAY 200 UNIDADES.

2. 

SOLUCIÓN
HAY 3 DECENAS.

3 VECES 10 = 30 UNIDADES

HAY 30 UNIDADES.

3. 

SOLUCIÓN
HAY 8 UNIDADES.

4. 

SOLUCIÓN
HAY 1 DECENA Y 1 UNIDAD.

10 UNIDADES + 1 UNIDAD = 11 UNIDADES

HAY 11 UNIDADES.

5. 

SOLUCIÓN
HAY 1 CENTENA, 1 DECENA Y 1 UNIDAD.

100 UNIDADES + 10 UNIDADES + 1 UNIDAD = 111 UNIDADES

HAY 111 UNIDADES.

EL NÚMERO 123 ESTÁ FORMADO POR TRES CIFRAS: 1, 2 Y 3. ¿PODEMOS CREAR MÁS NÚMERO CON ESTAS TRES CIFRAS? ¡CLARO QUE SÍ! POR EJEMPLO, EL NÚMERO 312 O EL 231. COMO VES, AUNQUE TENGAN LAS MISMAS CIFRAS, CADA NÚMERO TIENE UN VALOR DISTINTO PORQUE LAS POSICIONES SON DIFERENTES.    EN 123 EL 1 VALE 100; EN 312 EL 1 VALE 10; Y EN 231 EL 1 VALE 1.

 

PARA SABER LOS VALORES DE CADA CIFRA EN UN NÚMERO USAMOS UNA TABLA DE VALOR POSICIONAL COMO ESTA:

EL NÚMERO 468 TIENE:

  • 8 UNIDADES.
  • 6 DECENAS.
  • 4 CENTENAS.

¡CAMBIEMOS POSICIONES!

LA POSICIÓN DE UNA CIFRA EN UN NÚMERO INDICAN UN VALOR. SI UNA DE LAS CIFRAS CAMBIA DE POSICIÓN, ENTONCES SE CONVIERTE EN OTRO NÚMERO. OBSERVA ESTOS EJEMPLOS EN LOS QUE CAMBIAMOS LAS POSICIONES DE TRES CIFRAS: 4, 6 Y 8.

NÚMERO VALOR POSICIONAL SE LEE
468 4 CENTENAS

6 DECENAS

8 UNIDADES

CUATROCIENTOS SESENTA Y OCHO.
486 4 CENTENAS

8 DECENAS

6 UNIDADES

CUATROCIENTOS OCHENTA Y SEIS.
864 8 CENTENAS

6 DECENAS

4 UNIDADES

OCHOCIENTOS SESENTA Y CUATRO.
 846 8 CENTENAS

4 DECENAS

6 UNIDADES

OCHOCIENTOS CUARENTA Y SEIS.
684

 

6 CENTENAS

8 DECENAS

4 UNIDADES

SEISCIENTOS OCHENTA Y CUATRO.
648 6 CENTENAS

4 DECENAS

8 UNIDADES

SEISCIENTOS CUARENTA Y OCHO.

DESCOMPOSICIÓN DE NÚMEROS

CONSISTE EN CONVERTIR UN NÚMERO EN UNA SUMA DE SUS VALORES POSICIONALES.

– EJEMPLO:

EL NÚMERO 183 TIENE:

1 CENTENA = 1 VEZ 100 = 100 UNIDADES

8 DECENAS = 8 VECES 10 = 80 UNIDADES

3 UNIDADES = 3 VECES 1 = 3 UNIDADES

ENTONCES, LA DESCOMPOSICIÓN DEL NÚMERO 183 ES LA SIGUIENTE:

183 = 1 C + 8 D + 3 U

183 = 100 + 80 + 3

¡A PRACTICAR!

REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS:

  • 642
SOLUCIÓN
642 = 6 C + 4 D + 2 U

642 = 600 + 40 + 2

  • 789
SOLUCIÓN
789 = 7 C + 8 D + 9 U

789 = 700 + 80 + 9

  • 453
SOLUCIÓN
453 = 4 C + 5 D + 3 U

453 = 400 + 50 + 3

  • 998
SOLUCIÓN
998 = 9 C + 9 D + 8 U

998 = 900 + 90 + 8

¿SABÍAS QUÉ?
LA DESCOMPOSICIÓN DEL NÚMERO 1.000 TIENE UNA UNIDAD DE MIL Y SE ESCRIBE “1 UM”. 

UBICACIÓN EN LA RECTA NUMÉRICA

ES UNA LÍNEA RECTA EN LA QUE UBICAMOS LOS NÚMEROS. EL 0 ES EL COMIENZO DE LA RECTA, LUEGO VAN LOS NÚMEROS DE 1 EN 1 DE MENOR A MAYOR.

– EJEMPLO:

LA REGLA ES UN ELEMENTO QUE UTILIZAMOS PARA MEDIR OBJETOS O PARA TRAZAR LAS LÍNEAS DE UN DIBUJO. SU FORMA ES DELGADA Y RECTANGULAR, PUEDE SER RÍGIDA O FLEXIBLE Y HAY DE DISTINTOS MATERIALES: PLÁSTICO, GOMA, METAL, MADERA. EXISTEN OTROS ELEMENTOS QUE CUMPLEN UNA FUNCIÓN SIMILAR, PERO SON MÁS LARGOS, COMO POR EJEMPLO, LA CINTA MÉTRICA O EL METRO.

 

– EJEMPLO:

LAS EDADES DE CINCO HERMANOS SON LAS SIGUIENTES:

JUAN: 2 AÑOS; INÉS: 5 AÑOS; ALDO: 9 AÑOS; CARLA: 12 AÑOS; y LUCÍA: 18 AÑOS.

SI DESEAMOS UBICAR EN UNA RECTA NUMÉRICA LAS EDADES DE LOS HERMANOS SEGUIMOS ESTOS PASOS:

 

1) DIBUJAMOS UNA RECTA CON LAS FLECHAS EN LOS EXTREMOS, HACEMOS DIVISIONES DE IGUAL DISTANCIA Y UBICAMOS EL 0.

2) EN ESTE CASO HICIMOS 20 DIVISIONES PARA UBICAR TODAS LAS EDADES.

3) COLOCAMOS UN PUNTO EN EL VALOR DE LAS EDADES.

OBSERVA QUE MIENTRAS MÁS AVANZA HACIA LA DERECHA, MAYORES SON LOS NÚMEROS.

¡A PRACTICAR!

 

1. REALIZA LA DESCOMPOSICIÓN DE ESTOS NÚMEROS.

  • 275
SOLUCIÓN
275 = 2 C + 7 D + 5 U = 200 + 70 + 5
  • 638
SOLUCIÓN
638 = 6 C + 3 D + 8 U = 600 + 30 + 8
  • 996
SOLUCIÓN
996 = 9 C + 9 D + 6 U = 900 + 90 + 6
  • 47
SOLUCIÓN
47 = 4 D + 7 U = 40 + 7
  • 546
SOLUCIÓN
546 = 500 + 40 + 6
  • 87
SOLUCIÓN
87 = 80 + 7
  • 788
SOLUCIÓN
788 = 700 + 80 + 8
  • 9 D + 2 U =
SOLUCIÓN
92 = 90 + 2

 

2. UBICA EN ESTA RECTA NUMÉRICA LOS SIGUIENTES NÚMEROS: 0, 3, 10, 15 Y 20.

SOLUCIÓN

RECURSOS PARA DOCENTES

Composición y descomposición de números

El siguiente artículo destacado te permitirá trabajar con los alumnos la composición y descomposición aditiva de números.

VER

CAPÍTULO 3 / TEMA 1

Las fracciones y sus usos

En diversas situaciones cotidianas usamos números naturales para expresar la hora, nuestra edad o un número de teléfono. Sin embargo, si queremos indicar las partes de algo debemos recurrir a los números racionales, también conocidos como fracciones. Usamos estos números frecuentemente: por ejemplo, cuando hacemos una receta o al comprar una bebida.

¿Qué es una fracción?

Una fracción es una parte de un número entero y se representa como una división o un cociente. Está formada por un numerador y un denominador, ambos separados por una raya fraccionaria.

El denominador nos indica en cuántas partes hemos dividido el entero, mientras que el numerador nos muestra cuántas de esas partes hemos tomado.

 

– Ejemplo:

Compramos una barra de chocolate muy grande, entonces decidimos dividirla en tres partes iguales y comernos solo dos de esas porciones, ¿cómo representamos esa cantidad?

Primero consideramos la barra como un todo.

Luego, dividimos el todo en tres partes. Esto significa que el denominador es igual a 3.

Sombreamos o pintamos las dos partes que no comimos. Esto significa que el numerador es 2.

Este último gráfico representa a la fracción 2/3. Es decir, nos comimos 2/3 de chocolate.

¿Sabías qué?

Además de la raya fraccionaria, podemos representar números fraccionarios con diagonales o como divisiones. Por ejemplo:

\boldsymbol{\frac{1}{2}=1/2 =1\div 2}

VER INFOGRAFÍA

Imagina que estás con tres amigos y debes repartir una pizza para todos, ¿cómo harías el reparto? ¡Muy sencillo! Solo debes cortarla en cuatro partes iguales y cada uno podrá comer una rebanada, es decir, cada quien tomará 1/4 de la pizza. Observa que el pedazo que comes es igual al numerador y la cantidad total de pedazos es igual al denominador.

¿Cómo se leen las fracciones?

Cada vez que dividimos un entero, este recibe un nombre diferente. Observa esta tabla:

Partes en la que dividimos al entero ¿Cómo se lee?
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Así que para la lectura de fracciones seguimos estos pasos:

  1. Lee el número del numerador.
  2. Lee el número del denominador, es decir, las partes en las que se dividió el entero según la tabla.

– Ejemplos:

 

  • \frac{2}{8}  se lee “dos octavos”.

 

  • \frac{1}{2}  se lee “un medio”.

 

  • \frac{13}{40}  se lee “trece cuarentavos”.

 

  • \frac{1}{10}  se lee “un décimo”.

 

  • \frac{7}{15}  se lee “siete quinceavos”.

 

  • \frac{25}{100}  se lee “veinticinco centavos”.

 

Observa que cuando el numerador es 1, decimos “un” en lugar de “uno”.



Una fracción es una parte del número entero y se representa como una división o un cociente. Es un tipo de número muy usado en la cocina. Por ejemplo, cuando desayunamos podemos agregar a nuestro cereal 1/2 taza de leche o yogurt, también podemos añadir 1/4 de taza de frutas.

¿Sabías qué?
Una fracción con denominador 1 es igual a un número entero, por eso es común no escribir el denominador en estos casos. Por ejemplo, 8/1 = 8.

Tipos de Fracciones

Las fracciones pueden ser propiasimpropias o aparentes.

Fracciones propias

Son aquellas fracciones en las que el numerador es menor que el denominador. Estas fracciones siempre son menores que 1. Por ejemplo:

\frac{2}{3},  \frac{1}{4} y \frac{7}{10}

Fracciones impropias

Son aquellas fracciones en las que el numerador es mayor que el numerador. Estas fracciones siempre son mayores que 1. Por ejemplo:

\frac{4}{3},  \frac{5}{2} y \frac{8}{6}

Fracciones aparentes

Son aquellas fracciones cuyo numerador es múltiplo del denominador. Por ejemplo:

\frac{6}{3}=2

\frac{10}{2}=5

 

¿Qué tipo de fracción es?

Clasifica las siguientes fracciones en propias, impropias o aparentes:

  • \frac{8}{2}
Solución
Fracción aparente.
  • \frac{3}{5}
Solución
Fracción propia.
  • \frac{9}{4}
Solución
Fracción impropia.

 

Gráfico de Fracciones

De acuerdo al tipo de fracción, podemos graficar un entero o más de uno. Si es una fracción propia, usaremos un entero; sin embargo, si se trata de una fracción impropia, utilizaremos más de un entero.

Gráfico de fracciones propias

Este tipo de fracciones tiene el numerador menor que el denominador y siempre son menores que 1. Para graficarlas solo dibujamos cualquier figura (será el entero) y la dividimos en tantas partes como indique el denominador. Luego, pintamos las partes que señale el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{5}{8}

1. Dibujamos una figura, esta será el entero o “el todo”. En este caso es un rectángulo.

2. Dividimos el entero en 8 partes iguales porque el denominador de la fracción es 8.

3. Pintamos 5 partes del entero porque el numerador de la fracción es 5. Este será el gráfico de la fracción.

Gráfico de fracciones impropias

Estas fracciones tienen el numerador mayor al denominador y siempre son mayores que 1. Para realizar sus gráficos debemos dibujar una figura (será el entero) y dividirla en tantas partes como señale el denominador. Como el numerador es mayor, repetimos la figura la cantidad de veces necesaria para poder pintar la partes que exprese el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{9}{4}

1. Dibujamos una figura que represente al entero, por ejemplo, un cuadrado.

 

2. Dividimos el entero en 4 partes iguales porque el denominador de la fracción es 4.

 

3. Pintamos 9 partes del entero, pero como el entero solo tiene 4, repetimos la misma figura hasta que podamos tener las nueve partes para pintar. Este será el gráfico de la fracción.

Gráfico de una fracción aparente

En las fracciones aparentes el numerador es múltiplo del denominador. Para graficar estas fracciones podemos seguir los pasos anteriores. Como resultado, los gráficos tendrán siempre todas sus partes pintadas.

– Ejemplo:

Realiza el gráfico de la fracción \frac{6}{3}

Observa que, si bien el numerador es mayor que el denominador, 6 es múltiplo de 3, por lo tanto, 6 ÷ 3 = 2.

Si tomamos un rectángulo como entero, lo dividimos en 3 partes iguales (por el denominador) y repetimos la figura para poder pintar 6 partes (por el numerador); observaremos que el gráfico es igual a dos enteros completos.

Usos de Fracciones

Sin darnos cuenta, hacemos uso de las fracciones a diario. Por ejemplo, en las instrucciones para una receta que necesite 1/4 de taza de azúcar; en el supermercado cuando pedimos 1/2 kilogramo de fresas; cuando hablamos de distancias y decimos que nuestras casa está a 1/2 cuadra del kiosco; o al medir el tiempo y decir que en 1/2 hora empieza una serie de televisión. Cada vez que dividamos un valor entero en partes iguales empleamos fracciones.

Toda fracción indica que un todo se ha dividido en partes iguales. Cada vez que repartimos alimentos tratamos de hacerlo de esta forma. Por ejemplo, podemos comernos “medio trozo de pan” cuya fracción es 1/2, lo que quiere decir que dividimos la unidad (el pan) en dos partes iguales (el denominador) y tomamos una (el numerador).

Equivalencias de interés

Este cuadro muestra las fracciones que están contenidas en una unidad.

De otro modo:

1 = \frac{1}{2}+\frac{1}{2}

1 = \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}

\frac{1}{2}=\frac{1}{4}+\frac{1}{4}

\frac{1}{2} = \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}

¡A practicar!

1. En la panadería venden el pan rallado en bolsitas de 1 kg, 1/2 kg y 1/4 kg. Si José quiere comprar 2 kg de pan rallado…

a) ¿Cuántas bolsitas de 1/4 de kilo necesita?

Solución
 8 bolsitas de 1/4 de kg.

b) ¿Cuántas bolsitas de 1/2 kilo necesita?

Solución
4 bolsitas de 1/2 kg.

c) Si quiere llevar llevar 5 bolsitas para completar los 2 kg, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 4 bolsas de 1/4 de kg.

d) Si quiere llevar 3 bolsitas, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 2 bolsitas de 1/2 kg.

e) ¿Cuál es la menor cantidad de bolsitas que puede tomar? ¿y la mayor cantidad?

Solución
Puede tomar la menor cantidad de bolsitas si escoge las de mayor peso, es decir, las de 1 kg. Entonces, solo tomaría 2 bolsitas de 1 kg.

Para tomar la mayor cantidad de bolsita, debe escoger las de menor peso, que serían las de 1/4 de kg. En ese caso, llevaría 8 bolsitas de 1/4 de kg.

[/su_spoiler]

2. ¿Qué fracción representa cada gráfico?

Solución

Partes en las que dividimos el entero: 16

Partes sombreada: 10

Solución

\frac{4}{4}=1

Partes en las que dividimos el entero: 4

Partes sombreada: 4

Solución

\frac{6}{10}

Partes en las que dividimos el entero: 10

Partes sombreada: 6

 

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo te permitirá acceder a más ejemplos sobre las fracciones y sus tipos.

VER

Artículo “Clasificación de las fracciones”

El siguiente recurso proporciona más información sobre los tipo de fracciones y sus gráficos.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.