CAPÍTULO 4 / TEMA 2

rADICALES

Seguramente ya conoces qué es la potenciación, pero ¿sabías que hay otro tipo de operación muy relacionada con ella? Esta es la radicación y consiste en encontrar un número que al multiplicarse por sí mismo tenga como producto otro número determinado. La radicación es la operación inversa a la potenciación. Hoy aprenderás qué es y cómo calcularla.

¿Qué es la radicación?

Es una operación en la que hallamos raíces de orden n de un determinado número. La raíz n-ésima de un número a es igual a un número b que elevado a la n resulta en a.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 2}\; \; porque\; \; \boldsymbol{ 2^{3}= 2\times 2\times 2 = 8}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Como ves, la radicación y la potenciación tienen mucho en común, incluso en sus elementos. De modo que también podemos expresar a un radical como una potencia de exponente fraccionario.

\boldsymbol{\sqrt[n]{a^{x}} = a^{\frac{x}{n}}}

Ejemplo:

\boldsymbol{\sqrt[3]{8} = 8^{\frac{1}{3}}}

\boldsymbol{\sqrt[3]{27} = 27^{\frac{1}{3}}}

Relación entre potenciación y radicación

Existe una gran relación complementaria entre la potenciación y la radicación, y la podemos observar con la semejanza que existe entre los elementos que la componen.

  • Al exponente de la potencia se lo llama índice de radical.
  • Al resultado denominado potencia se lo llama raíz.
  • A la base de la potencia se la llama radicando.

Elementos de los radicales

Al igual que en la potenciación, aquí existen 3 elementos a definir que son los que componen la radicación:

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

¿Sabías qué?
Si el radicando es un número negativo, y el índice es par, no podrá aplicarse la operación de radicación porque el resultado no pertenecerá a los reales.

Raíces cuadradas y cúbicas

De la misma manera que en la potenciación, cuando el índice de la raíz es n = 2 y n = 3 merece una distinción. Por lo tanto, a estos los vamos a denominar como raíz cuadrada y cúbica, respectivamente.

La raíz cuadrada es aquella cuyo índice es 2. No es necesario escribir el índice de la raíces cuadradas. Por ejemplo:

\boldsymbol{\sqrt[2]{9}=\sqrt{9}}     Se lee “raíz cuadrada de nueve”.

La raíz cúbica es aquella cuyo índice es 3. Por ejemplo:

\boldsymbol{\sqrt[3]{8}}     Se lee “raíz cúbica de 8”.

Para encontrar la solución de un radical se debe pensar: ¿qué número habrá que elevar al índice n para que el resultado sea el valor del radicando? Ese número será el resultado denominado como raíz. Por ejemplo, para resolver √9 se debe pensar: ¿qué número debo elevar al cuadrado (n = 2) para que el resultado sea 9?. La respuesta es 3.

Solución de raíces

La solución de una raíz depende principalmente del radicando y del índice de la raíz. En algunas ocasiones puede tener una o dos soluciones y, en otros casos, puede que no tenga solución.

  • Radicando mayor que cero con n par.

Hay dos soluciones: una positiva y una negativa.

\boldsymbol{\sqrt{4}=\pm 2}\; \; porque \; \; \boldsymbol{(-2)^{2}=4\; \; y\; \; 2^{2}=4}

  • Radicando mayor que cero con n impar.

Hay una solución positiva.

\boldsymbol{\sqrt[3]{125}=5}\; \; porque \; \; \boldsymbol{5^{3}=5\times 5\times 5=125}

  • Radicando menor que cero con n par.

No tiene solución dentro de los números reales.

\boldsymbol{\sqrt{-9}=}no \; existe \; en\; \mathbb{R}

  • Radicando menor que cero con n impar.

Hay una sola negativa.

\boldsymbol{\sqrt[3]{-64} = -4} \; \; porque\; \; \boldsymbol{(-4)^{3}= -4\times -4\times -4 = -64}

[/su_note]

– Ejemplos de raíces:

\boldsymbol{\sqrt{4} = 2}

\boldsymbol{\sqrt{9} = 3}

\boldsymbol{\sqrt[3]{1}=1}

\boldsymbol{\sqrt[3]{27}=3}

\boldsymbol{\sqrt[4]{16}=2}

¿Sabías qué?
Cuando el índice de potencia es una fracción se puede expresar como un radical. Por ejemplo: 91/3 3√9

¡A practicar!

¿Cuál es el resultado de los siguientes ejercicios?

  • \boldsymbol{\sqrt{25}}

Solución

\boldsymbol{\sqrt{25}=5}\; \; porque \; \; \boldsymbol{5^{2}= 5\times 5 = 25}

  • \boldsymbol{\sqrt[3]{64}}

Solución

\boldsymbol{\sqrt[3]{64}= 4}\; \; porque \; \; \boldsymbol{4^{3}=4\times 4\times 4=64}

  • \boldsymbol{\sqrt[5]{-32}}

Solución

\boldsymbol{\sqrt[5]{-32}=-2} \; \; porque\; \; \boldsymbol{(-2)^{5}=-2\times -2\times -2\times -2\times -2=-32}

La radicación es la operación opuesta a la potenciación y consiste en hallar raíces de orden n de un determinado número. Consta de tres elementos llamados índice, radicando y raíz. El símbolo usado para mostrar esta operación se lo conoce como raíz o radical y el primero en utilizarlo fue el matemático Christoph Rudolff en 1525.

Raíces exactas e inexactas

La raíz cuadrada exacta es aquella que tiene como radicando un cuadrado perfecto, mientras que la raíz cuadrada inexacta es la que no tiene como radicando un cuadrado perfecto.

Cuadrados perfectos

Un cuadrado perfecto resulta de multiplicar un número por sí mismo dos veces. Estos números los podemos ordenar en un cuadrado, por ejemplo, 9 es un cuadrado perfecto porque lo podemos escribir como 3 x 3 y lo ordenamos como:

En esta tabla verás la relación de los diez primeros cuadrados perfectos con sus raíces:

Cuadrado perfecto Raíz cuadrada exacta
1^{2}=1 \sqrt{1}=1
2^{2}=4 \sqrt{4}=2
3^{2}=9 \sqrt{9}=3
4^{2}=16 \sqrt{16}=4
5^{2}=25 \sqrt{25}=5
6^{2}=36 \sqrt{36}=6
7^{2}=49 \sqrt{49}=7
8^{2}=64 \sqrt{64}=8
9^{2}=81 \sqrt{81}=9
10^{2}=100 \sqrt{100}=10

Pero no todos los números tienen raíces cuadradas exactas. En esos casos, calculamos la raíz cuadrada entera y luego contamos el resto. Por ejemplo, 55 no tiene raíz cuadrada exacta porque 72 = 49 y 82 = 64.

Por aproximación o tanteo, decimos que la raíz cuadrada entera de 55 es 7 y el resto lo obtenemos por la resta 55 − 49 = 6.

Entonces, \sqrt{55} = 5\; \; y\; resto \; 6.

¡A practicar!

1. ¿Qué tipo de raíz dará como resultado cada uno de los siguientes ejercicios?

  • \sqrt{121}

Solución
Raíz exacta.
  • \sqrt{13}

Solución
Raíz inexacta.
  • \sqrt{125}

Solución
Raíz inexacta.
  • \sqrt{70}

Solución
Raíz inexacta

2. Completa.

  • 5^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{25}=\underline{\: \: \: \: \: \: }
Solución

5^{2}=\boldsymbol{25}\Leftrightarrow \sqrt{25}=\boldsymbol{5}

  • 10^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{100}=\underline{\: \: \: \: \: \: }
Solución

10^{2}=\boldsymbol{100}\Leftrightarrow \sqrt{100}=\boldsymbol{10}

  • 12^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{144}=\underline{\: \: \: \: \: \: }
Solución

12^{2}=\boldsymbol{144}\Leftrightarrow \sqrt{144}=\boldsymbol{12}

  • 13^{2}=\underline{\: \: \: \: \: \: }\Leftrightarrow \sqrt{169}=\underline{\: \: \: \: \: \: }
Solución

13^{2}=\boldsymbol{169}\Leftrightarrow \sqrt{169}=\boldsymbol{13}

3. Resuelve las siguientes raíces cuadradas.

  • \sqrt{400}
Solución

\sqrt{400}=\boldsymbol{20}

  • \sqrt{70}
Solución

\sqrt{70}= \boldsymbol{8} \; y \; resto\; \boldsymbol{6}

  • \sqrt{625}
Solución

\sqrt{625}=\boldsymbol{25}

  • \sqrt{17}
Solución

\sqrt{17}= \boldsymbol{4}\; y\; resto \; \boldsymbol{1}

  • \sqrt{81}
Solución

\sqrt{81}=\boldsymbol{9}

RECURSOS PARA DOCENTES

Artículo “La radicación”

En es artículo encontrará los aspectos inherentes a la radicación y encontrará una introducción a las propiedades de radicación y potenciación.

VER

Artículo “Cálculo de una raíz cuadrada”

Este recurso le permitirá profundizar sobre las raíces cuadradas y cómo calcularla paso a paso sin calculadora.

VER

CAPÍTULO 1 / TEMA 6

CONJUNTO

A DIARIO PODEMOS ENCONTRAR QUE LOS OBJETOS QUE USAMOS TIENEN CARACTERÍSTICAS EN COMÚN. POR EJEMPLO, EN LOS SUPERMERCADOS VEMOS ESTANTES DE PRODUCTOS POR GRUPOS: LOS VEGETALES, LOS VÍVERES, LOS REFRIGERADOS, LAS GOLOSINAS, LOS REFRESCOS, ENTRE OTROS. ESTOS GRUPOS SE LLAMAN CONJUNTOS ¡APRENDAMOS CÓMO REPRESENTARLOS!

¿QUÉ ES UN CONJUNTO?

UN CONJUNTO ES UN GRUPO DE OBJETOS QUE COMPARTEN UNA CARACTERÍSTICA EN COMÚN. LOS OBJETOS QUE CONFORMAN EL CONJUNTO SE LLAMAN ELEMENTOS Y PUEDEN SER DE CUALQUIER TIPO: LETRAS, NÚMEROS, ALIMENTOS, DEPORTES, PERSONAS O JUEGOS.

  • A ES EL CONJUNTO DE LOS ANIMALES.

 

  • N ES EL CONJUNTO DE LOS NÚMEROS.

LA IDEA DE AGRUPAR OBJETOS CON CARACTERÍSTICAS COMUNES ES PARTE DE NUESTRA VIDA COTIDIANA. VEMOS CONJUNTOS DE ZAPATOS EN LAS ZAPATERÍAS, CONJUNTOS DE FRUTAS O VERDURAS EN LAS VERDULERÍAS, CONJUNTOS DE FLORES EN UN JARDÍN, CONJUNTOS DE VÍVERES EN UN MERCADO, CONJUNTOS DE NIÑOS EN LAS ESCUELAS Y CONJUNTOS DE LIBROS EN UNA BIBLIOTECA.

ELEMENTOS DE UN CONJUNTO

SON TODOS LOS OBJETOS QUE CONFORMAN UN CONJUNTO. POR EJEMPLO:

  • U ES EL CONJUNTO DE LOS ÚTILES ESCOLARES. TIENE 9 ELEMENTOS.

  • S ES EL CONJUNTO DE LOS DÍAS DE LA SEMANAS. TIENE 7 ELEMENTOS.

 

AQUÍ PODEMOS VER ROLLOS DE TELA QUE SON ELEMENTOS SIMILARES AGRUPADOS. ¿POR QUÉ ES UN CONJUNTO? PORQUE TODOS LOS ROLLOS QUE SE OBSERVAN COMPARTEN LA MISMA CARACTERÍSTICA. ESTOS TIENEN QUE ESTAR JUNTOS PARA QUE PUEDAN EXPRESARSE COMO UN CONJUNTO. A PESAR DE QUE TENGAN DIFERENTES COLORES, TEXTURAS, RELIEVES, COMPARTEN ALGO EN COMÚN: SON UN TIPO DE TELA.

REPRESENTACIÓN DE CONJUNTOS

PODEMOS REPRESENTAR LOS CONJUNTOS DE DOS MANERAS:

1. DIAGRAMA DE VENN

P ES EL CONJUNTO DE LOS NÚMEROS PARES. ESTE CONJUNTO TIENE SEIS ELEMENTOS: 2, 4, 6, 8, 10 Y 12.

2. LLAVES

P = {2, 4, 6, 8, 10, 12}

P ES EL CONJUNTO DE LOS NÚMEROS PARES. ESTE CONJUNTO TIENE SEIS ELEMENTOS: 2, 4, 6, 8, 10 Y 12.

 

¿SABÍAS QUÉ?
CUANDO UN CONJUNTO SOLO TIENE UN ELEMENTO SE LO LLAMA CONJUNTO UNITARIO.

SUBCONJUNTOS

SON CONJUNTOS DENTRO DE OTRO CONJUNTO. ESTOS COMPARTEN OTRA CARACTERÍSTICA EN COMÚN.

OBSERVA EL CONJUNTO F DE LAS FRUTAS Y VEGETALES.

ESTE CONJUNTO TIENE 12 ELEMENTOS. PERO ADEMÁS DE SER FRUTAS O VEGETALES, VARIOS DE ELLOS TIENEN OTRA CARACTERÍSTICA EN COMÚN: EL COLOR.

ENTONCES, DENTRO DEL CONJUNTO F HAY SUBCONJUNTOS V, R Y A.

ASÍ COMO REPRESENTAMOS CONJUNTOS Y SUBCONJUNTOS CON DIAGRAMAS DE VENN, TAMBIÉN PODEMOS MOSTRARLOS CON LLAVES:

  • CONJUNTO

F = {GUISANTES, PEPINO, LECHUGA, UVAS, FRESA, MANZANA, TOMATE, FRAMBUESA, KIWI, PIÑA, LIMÓN, BANANAS}

  • SUBCONJUNTOS

V = {GUISANTES, PEPINO, LECHUGA}

R = {FRESA, TOMATE, MANZANA}

A = {PIÑA, LIMÓN, BANANAS}

EL GRUPO DE NIÑOS MÚSICOS ES UN CONJUNTO DE 6 ELEMENTOS. DENTRO DE ESTE CONJUNTO TAMBIÉN PODEMOS ENCONTRAR TRES SUBCONJUNTOS EN LOS QUE ALGUNOS ELEMENTOS VAN A COMPARTIR UNA CARACTERÍSTICA. POR EJEMPLO, AQUÍ PODRÍAMOS CLASIFICAR SUBCONJUNTOS DE AQUELLOS QUE TOCAN INSTRUMENTOS DE VIENTO, DE PERCUSIÓN O DE CUERDA.

CUANTIFICADORES

LOS CUANTIFICADORES SIRVEN PARA SABER LA CANTIDAD DE VECES QUE UN ELEMENTO CUMPLE CON UNA CONDICIÓN. LOS EXPRESAMOS CON TÉRMINOS COMO “TODOS“, “ALGUNOS” O “NINGUNO“.

OBSERVA EL CONJUNTO T.

EN EL CONJUNTO T TODOS SON TRIÁNGULOS.

EN EL CONJUNTO T ALGUNOS TRIÁNGULOS SON ROJOS.

EN EL CONJUNTO T NINGÚN TRIÁNGULO ES AMARILLO.

 

– OTRO EJEMPLO:

OBSERVA EL CONJUNTO Q.

 

EN EL CONJUNTO Q TODOS SON ANIMALES.

EN EL CONJUNTO Q ALGUNOS PUEDEN VOLAR.

EN EL CONJUNTO Q NINGUNO TIENE SEIS PATAS.

 

CUANTIFICADORES: ¿QUÉ SON?

LOS CUANTIFICADORES NOS INDICAN LA CANTIDAD DE ELEMENTOS DE UN CONJUNTO  QUE CUMPLEN CON UNA PROPIEDAD PARTICULAR. EN ESTE CASO, VEMOS UN CONJUNTO DE 6 NIÑOS, ES DECIR DE 6 ELEMENTOS. SI NOS PREGUNTAMOS CUÁNTOS DE ELLOS ESTÁN FELICES, AL VER SUS CARAS PODRÍAMOS DECIR QUE TODOS. ALLÍ USAMOS UN CUANTIFICADOR PARA DETERMINAR LA CANTIDAD DE ELEMENTOS DEL CONJUNTO QUE COMPARTEN UN MISMO ESTADO DE ÁNIMO.

¡A PRACTICAR!

1. OBSERVA LOS CONJUNTOS Y RESPONDE LAS PREGUNTAS CON LOS CUANTIFICADORES NECESARIOS.

A = { LORO, GATO, HORMIGA, CUERVO, GAVIOTA, JIRAFA }

  • ¿CUÁNTOS ELEMENTOS PUEDEN VOLAR?
SOLUCIÓN
ALGUNOS
  • ¿CUÁNTOS ELEMENTOS PUEDEN LADRAR?
SOLUCIÓN
NINGUNO
  • ¿CUANTOS ELEMENTOS SON ANIMALES?
SOLUCIÓN
TODOS

 

B = {CÍRCULO, TRIÁNGULO, CUADRADO, RECTÁNGULO}

  • ¿CUANTOS ELEMENTOS SON FRUTAS?
SOLUCIÓN
NINGUNO
  • ¿CUÁNTOS ELEMENTOS SON FIGURAS GEOMÉTRICAS?
SOLUCIÓN
TODOS
  • ¿CUÁNTOS ELEMENTOS TIENEN CUATRO LADOS?
SOLUCIÓN
ALGUNOS

 

2. OBSERVA EL CONJUNTO A DE LOS ANIMALES. CREA DOS SUBCONJUNTOS: CONJUNTO B DE LOS ANIMALES QUE PUEDEN VOLAR Y CONJUNTO C DE LOS ANIMALES QUE PUEDEN NADAR.

A = {ÁGUILA, BALLENA, ORCA, LORO, PEZ GLOBO, GAVIOTA}

SOLUCIÓN

B = {ÁGUILA, LORO, GAVIOTA}

C = {BALLENA, ORCA, PEZ GLOBO}

 

3. OBSERVA EL CONJUNTO T DE LOS MEDIOS DE TRANSPORTE. CREA DOS SUBCONJUNTOS: CONJUNTO D DE LOS TRANSPORTES TERRESTRES Y CONJUNTO F DE LOS MEDIOS DE TRANSPORTES AÉREOS.

T = {AUTOMÓVIL, MOTO, AVIÓN, BICICLETA, HELICÓPTERO, METRO}

SOLUCIÓN

D = {AUTOMÓVIL, MOTO, BICICLETA, METROS}

F = {AVIÓN, HELICÓPTERO}

 

4. ¿CUÁLES SUBCONJUNTOS SE PUEDEN FORMAR EN EL CONJUNTO L DE LAS LETRAS?

SOLUCIÓN

SUBCONJUNTO V DE LAS VOCALES.

V = {A, E, I, O, U}

SUBCONJUNTO C DE LAS CONSONANTES.

C = {B, C, D, F}

RECURSOS PARA DOCENTES

Artículo “Relación entre conjuntos”

En el siguiente artículo encontrarás más información sobre conjuntos y la forma en la que se relacionan entre ellos.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 5 / TEMA 7

La circunferencia

Una de las curvas más estudiadas en la geometría es, sin duda, la circunferencia. Tiene características únicas y ha sido pieza fundamental en invenciones humanas como la rueda. Para trazar esta figura usamos el compás, y su longitud está determinada por un número muy particular: el número pi.

¿Qué es una circunferencia?

Es la curva plana y cerrada cuyos puntos equidistan del centro; es decir, están a la misma distancia del centro de la circunferencia.

Los griegos y la circunferencia

Sin lugar a duda, los antiguos griegos tuvieron una gran influencia en el perfeccionamiento de la geometría. Para ellos, la línea recta y la circunferencia eran muy importantes en sus construcciones matemáticas, lo que permitió que realizaran increíbles descubrimientos para su época. Por ejemplo, Eratóstene de Cirene, que vivió entre 276 y 194 a. C., fue la primera persona en calcular la circunferencia de la Tierra.

Elementos de la circunferencia

En la circunferencia se pueden observar los siguientes elementos:

Centro: es el punto en torno al cual equidistan todos los puntos de la curva.

Radio: es un segmento de recta que une el centro de la circunferencia con cualquiera de sus puntos.

Diámetro: es un segmento de recta que une a dos puntos de la circunferencia y pasa por el centro de la misma. Su longitud es igual al doble del radio.

Cuerda: es un segmento de recta que une a dos puntos de la circunferencia sin pasar por el centro.

Arco: es una porción de la circunferencia que se encuentra limitada por una cuerda.

Semicircunferencia: es la porción de circunferencia limitada por el diámetro. Equivale a la mitad de la circunferencia.

Posiciones de una recta en relación a la circunferencia

Recta tangente: es la recta que comparte un mismo y único punto con la circunferencia.

Recta secante: es la recta que comparte dos puntos con la circunferencia.

Recta exterior: es la recta que no comparte ningún punto con la circunferencia.

¿Sabías qué?
La circunferencia de la tierra mide cerca de 40.000 km de longitud.

Diferencia entre círculo y circunferencia

Es posible que confundamos los conceptos de círculo y circunferencia porque están muy relacionados entre sí, pero se trata de dos términos diferentes. El círculo es una figura plana que corresponde al área contenida dentro de una circunferencia. La circunferencia, por su parte, representa el perímetro del círculo, es decir, es la línea que forma el contorno de la figura.

VER INFOGRAFÍA

El círculo es una figura que presenta diferentes elementos, como el semicírculo, los sectores circulares y los segmentos circulares. El primero es el área comprendida entre el diámetro y una semicircunferencia; el segundo consiste en las regiones comprendidas entre dos radios y el arco que estos forman; y el tercero se trata de los segmentos que se forman entre una cuerda y su arco.

Trazado de circunferencias

El compás es el instrumento por excelencia para trazar circunferencias y su origen es muy antiguo. Un compás consta de los siguientes elementos principales:

  1. Un mango.
  2. Una punta metálica.
  3. Una punta trazadora.
  4. Dos brazos regulables.

El uso de esta herramienta es relativamente sencillo. Para trazar una circunferencia con un compás lo primero que debemos hacer es conocer el radio de la circunferencia y trazarlo con la ayuda de una regla. Luego posicionamos la punta metálica en uno de los extremos del segmento y luego abrimos los brazos hasta que la punta trazadora esté ubicada en el otro extremo del segmento. Finalmente, con ayuda del mango, trazamos la circunferencia.

Circunferencias a nuestro alrededor

Un anillo o un aro son ejemplos de circunferencias, pero hay muchos más. Al ser una circunferencia el contorno de un círculo, la observamos en los bordes de las ruedas de los autos, en un molde para hacer una torta o un pastel y hasta incluso en juguetes como los platos voladores.

Las circunferencias han sido elementos fundamentales en el desarrollo de la geometría y con ello también han permitido a los seres humanos realizar grandes invenciones como la rueda.

La circunferencia es el contorno de una de las figuras más comunes: el círculo. Es frecuente observarlas en platos, ruedas, pasteles, diseños y pinturas. Han permitido realizar cálculos y aproximaciones, como el descubrimiento del número pi que relaciona la longitud de la circunferencia con su radio y que ha tenido numerosas aplicaciones prácticas.

 

¡A practicar!

  1. Además del centro, ¿qué elementos de la circunferencia observas?

a) 

Solución
Diámetro.

b)

Solución
Arco.

c)

Solución
Cuerda.

d)

Solución
Radio.

2. ¿Cuál de las siguientes rectas es una tangente?

a) 

b) 

c) 

d) 

Solución
c)  Es tangente porque solo comparte un punto en común con la circunferencia.

 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El siguiente artículo explica de forma resumida qué es una circunferencia y los diferentes elementos que la integran como el radio, la cuerda, el diámetro, etc.

VER

Artículo “Ángulos en la circunferencia”

Este artículo relaciona los conceptos de ángulo y circunferencia, así como también explica sus características.

VER

CAPÍTULO 2 / TEMA 2

sustracción

LA RESTA O SUSTRACCIÓN ES LA OPERACIÓN INVERSA A LA SUMA. EN ESTE CÁLCULO “QUITAMOS” UNA CANTIDAD A OTRA, POR EJEMPLO, SI TENEMOS 8 CARAMELOS Y NOS COMEMOS 3, AL FINAL TENDREMOS SOLO 5. AUNQUE TIENE MUCHA RELACIÓN CON LA SUMA, NO CUMPLE CON LAS MISMAS PROPIEDADES. EN ESTE ARTÍCULO APRENDERÁS CÓMO RESTAR NÚMEROS DE HASTA TRES CIFRAS.

LA SUSTRACCIÓN Y SUS ELEMENTOS

LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO.

– EJEMPLO:

MARÍA TENÍA 10 MAGDALENAS Y REGALÓ 8 MAGDALENAS A SUS AMIGOS, ¿CUÁNTAS MAGDALENAS LE QUEDARON?

ESTE PROBLEMA LO SOLUCIONAMOS POR MEDIO DE UNA SUSTRACCIÓN. AL MINUENDO 10 LE “QUITAMOS” EL SUSTRAENDO 8 (10 − 8). POR ESTO, LA RESTA O DIFERENCIA ES 2.

UNA DE LAS FORMAS MÁS SENCILLAS DE HACER RESTAS DE PEQUEÑAS CANTIDADES ES CON LOS DEDOS O CON PALITOS. POR EJEMPLO, SI DESEAS RESTARLE 4 A 9, DEBES TOMAR 9 PALITOS, LUEGO QUITAS 4 PALITOS Y LA CANTIDAD DE PALITOS QUE TE QUEDEN SERÁ LA DIFERENCIA O RESTA. LO REPRESENTAMOS ASÍ: 9 − 4 = 5. SEGURO TIENES PALITOS EN TU CASA. ¡INTÉNTALO!

 

RESTA CON TABLAS POSICIONALES

ES UNA MANERA DE REPRESENTAR LAS RESTAS O SUSTRACCIONES. CONSISTE EN COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO. POR EJEMPLO:

COMO VES, PRIMERO RESTAMOS LA UNIDADES (9 − 8 = 1) Y LUEGO LAS DECENAS (4 − 0 = 4).

¡ES TU TURNO!

REALIZA LAS SIGUIENTES RESTAS:

  • 79 − 6
  • 36 − 4
  • 25 − 2
SOLUCIÓN

¿SABÍAS QUÉ?
SI NO HAY UN NÚMERO EN LA CASILLA DE LAS DECENAS O CENTENAS SE ENTIENDE QUE HAY UN CERO. 

RESTAS PRESTANDO

CUANDO LA UNIDAD DEL MINUENDO ES MENOR QUE LA DEL SUSTRAENDO TENEMOS QUE “PRESTAR” UNA DECENA. SI SUCEDE CON LA DECENA DEL MINUENDO, PRESTAMOS UNA CENTENA. LOS PASOS SON LOS SIGUIENTES:

1. COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. DIBUJAMOS LA LÍNEA Y EL SIGNO “MENOS”.

 

2. COMO A 3 NO SE LE PUEDE RESTAR 7, PRESTAMOS UNA DECENA A LA POSICIÓN DE LAS UNIDADES. DE ESTE MODO, EL 3 SE TRANSFORMA EN 13. COMO 6 PRESTÓ UNA DECENA, LO TACHAMOS Y AHORA SE CONVIERTE EN 5.

 

3. RESTAMOS LAS UNIDADES. TENEMOS QUE 13 − 7 = 6.

 

4. RESTAMOS LA DECENAS. TENEMOS QUE 5 − 2 = 3.

 

– OTROS EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

PROPIEDADES DE LA SUSTRACCIÓN

LA SUSTRACCIÓN NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA ADICIÓN. LA SUSTRACCIÓN NO CUMPLE CON LA PROPIEDAD CONMUTATIVA, NI CON LA PROPIEDAD ASOCIATIVA.

ELEMENTO NEUTRO

LA RESTA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO EL NÚMERO INICIAL.

¿CÓMO COMPROBAR UNA RESTA?

CON LA SUMA DEL SUSTRAENDO Y LA DIFERENCIA O RESTA.

¡ES TU TURNO!

REALIZA ESTAS RESTAS Y LUEGO COMPRUEBA EL RESULTADO.

  • 966 − 82
SOLUCIÓN
966 − 82 = 884

COMPROBACIÓN:

82 + 884 = 966

  • 32 − 27
SOLUCIÓN
32 − 27 = 5

COMPROBACIÓN:

27 + 5 = 32

LA RESTA NO TIENE LAS MISMAS PROPIEDADES DE LA SUMA YA QUE SU OPERACIÓN ES LA INVERSA. LA RESTA NO ES CONMUTATIVA PORQUE SI CAMBIAMOS DE POSICIÓN EL SUSTRAENDO Y EL MINUENDO SU RESULTADO NO VA A SER UN NÚMERO NATURAL. LA RESTA NO ES ASOCIATIVA PORQUE AL CAMBIAR EL ORDEN DE LAS CANTIDADES CAMBIA SU RESULTADO.

¡PRACTIQUEMOS LO APRENDIDO!

1. JOSÉ QUIERE COMPRAR UNOS INSTRUMENTOS QUE CUESTAN $ 257. SI HA AHORRADO $ 129, ¿CUÁNTO DINERO LE FALTA  PARA PODER COMPRAR LOS INSTRUMENTOS?

  • DATOS

PRECIO DE LOS INSTRUMENTOS: $ 257

DINERO AHORRADO: $ 129

  • PREGUNTA

¿CUÁNTO DINERO LE FALTA A JOSÉ PARA PODER COMPRAR LOS INSTRUMENTOS?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 257 Y EL SUSTRAENDO ES 129. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

A JOSÉ LE FALTAN $ 128 PARA PODER COMPRAR LOS INSTRUMENTOS.

 


2. UNA ESCUELA PLANIFICA UN VIAJE ESCOLAR. EN TOTAL VAN 240 PERSONAS ENTRE ESTUDIANTES Y PROFESORES. SI HAY 25 PROFESORES, ¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • DATOS

TOTAL DE ESTUDIANTES Y PROFESORES: 240

TOTAL DE PROFESORES: 25

  • PREGUNTA

¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 240 Y EL SUSTRAENDO ES 25. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

VIAJAN 215 ESTUDIANTES.

 


3. A UN MUSEO ASISTIERON 389 PERSONAS EN UN DÍA. SI DURANTE LA MAÑANA SOLO FUERON 19 PERSONAS, ¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • DATOS

ASISTENTES EN UN DÍA: 389

ASISTENTES DE LA MAÑANA: 19

  • PREGUNTA

¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 389 Y EL SUSTRAENDO ES 19. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

EN LA TARDE FUERON 370 PERSONAS AL MUSEO.

 


4. EL SEÑOR PEDRO TIENE 436 MANZANAS VERDES Y ROJAS PARA VENDER. 184 MANZANAS SON VERDES Y LAS DEMÁS SON ROJAS. ¿CUÁNTAS MANZANAS SON ROJAS?

  • DATOS

CANTIDAD DE MANZANAS: 436

CANTIDAD DE MANZANAS VERDES: 184

  • PREGUNTA

¿CUÁNTAS MANZANAS SON ROJAS?

  • ANALIZA

DEBEMOS RESTAR ESTAS CANTIDADES. 436 ES EL MINUENDO Y 184 ES EL SUSTRAENDO.

  • CALCULA

  • RESPUESTA

252 MANZANAS SON ROJAS.

 


LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. LAS PODEMOS REPRESENTAR DE MANERA HORIZONTAL O DE MANERA VERTICAL POR MEDIO DE UNA TABLA POSICIONAL. EL SIGNO MENOS (−) ES UN POCO MÁS LARGO QUE EL GUIÓN (-) Y UN POCO MÁS CORTO QUE LA RAYA (—).

¡A PRACTICAR!

1. RESUELVE LAS SIGUIENTES RESTAS:

  • 48 − 12
SOLUCIÓN
48 − 12 = 36 
  • 589 − 354
SOLUCIÓN
589 − 354 = 235
  • 16 − 14
SOLUCIÓN
16 − 14 = 2
  • 708 − 573
SOLUCIÓN
708 − 573 = 135
  • 86 − 45
SOLUCIÓN
86 − 45 = 41
  • 78 − 28
SOLUCIÓN
78 − 28 = 50
  • 337 − 182
SOLUCIÓN
337 − 182 = 155

 

 

2. ¿QUÉ NÚMERO FALTA?

  • ____ − 342 = 484
SOLUCIÓN
826 − 342 = 484
  • ____ − 182 = 155
SOLUCIÓN
337 − 182 = 155
  • ____ − 82 = 464
SOLUCIÓN
546 − 82 = 464
  • ____ − 6 = 315
SOLUCIÓN
321 − 6 = 315
  • ____ − 14 = 313
SOLUCIÓN
327 − 14 = 313
  • ____ − 317 = 227
SOLUCIÓN
544 − 317 = 227

 

3. COLOREA EL DIBUJO SEGÚN EL RESULTADO DE LAS SUMAS Y RESTAS.

 

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Con el siguiente artículo podrás ampliar las estrategias de enseñanza para la resta de números naturales.

VER

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER

CAPÍTULO 4 / TEMA 2

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos ocupan un lugar en el espacio y poseen tres dimensiones: alto, largo y ancho. Un ejemplo de esto son los dados, los cuales tienen forma de cubo; o una pelota de fútbol, que tiene forma de esfera. Si miras a tu alrededor, es posible que encuentres diferentes cuerpos geométricos con los que interactúas todos los días.

cuerpos geométricos y sus tipos

Existen dos tipos de cuerpos geométricos: los poliedros y los cuerpos redondos.

Los poliedros tienen todas sus caras planas y no pueden rodar. Entre los poliedros más conocidos encontramos:

VER INFOGRAFÍA

Pirámides de Egipto

Las pirámides de Egipto fueron construidas hace miles de años por el primer arquitecto reconocido en la historia: Imhotep. Estos increíbles monumentos servían como tumba para los faraones y fueron construidos en forma de pirámide cuadrangular porque simbolizan los rayos del Sol. Creían que, de esta manera, el alma de los faraones iría directo al cielo.

Los cuerpos redondos están formados por una cara en forma curva y pueden rodar. Encontramos los siguientes:

¿Sabías qué?

El Sol es la esfera más perfecta que se ha observado hasta el momento. Si esta esfera estuviese, vacía necesitaríamos un millón de planetas Tierra para llenarla.

elementos de los cuerpos geométricos

Los elementos de un cuerpo geométrico son: caras, aristas y vértices.

  • Caras: son figuras planas que rodean el cuerpo geométrico. Las caras de las bases sirven para apoyarse en el plano.
  • Aristas: son las uniones entre dos caras de un cuerpo.
  • Vértices: son los puntos de unión de tres o más aristas.

Atomium

Es una de las construcciones más impresionantes de Bruselas y fue construida para la exposición universal de 1958. Está construido por 9 esferas y su diseño completo tiene forma de cubo. En la esfera más alta los visitantes pueden conocer el restaurante circular y una de las vistas panorámicas más grandiosas de la ciudad. Una de las esferas tiene una exposición con los detalles de su construcción, mientras que otra está dedicada a juegos interactivos para niños.

¡Observa y responde!

  • ¿Qué elementos de la imagen son cuerpos redondos?
    Solución
    La lata de gaseosa, la Tierra y el cono de tránsito.
  • ¿Qué elementos son poliedros?
    Solución
    La caja de cereal, la pirámide y la caja marrón.
  • ¿Cómo se llama el cuerpo geométrico representado por la lata de gaseosa?
    Solución
    Cilindro.
  • ¿Cómo se llama el cuerpo geométrico representado por la caja marrón?
    Solución
    Cubo.
  • ¿Qué forma tiene la base de la pirámide?
    Solución
    Cuadrangular.
  • ¿Cuántas caras, vértices y aristas tiene esta pirámide?
    Solución
    5 caras, 5 vértices y 8 aristas.
  • ¿Qué cuerpo geométrico es la Tierra?
    Solución
    Una esfera.
  • ¿Cuántas caras, vértices y aristas tiene la caja de cereales?
    Solución
    6 caras, 8 vértice y 12 aristas.
  • ¿Qué cuerpo geométrico representa la caja de cereal?
    Solución
    Un prisma cuadrangular.

construcción de cuerpos geométricos

Podemos dibujar figuras planas como el triángulo en una hoja con las herramientas de geometría, pero para construir un cuerpo geométrico necesitamos dibujar con perspectiva, ya que estos cuerpos tienen profundidad. Veremos que los diagramas nos ayudarán a identificar las características que tiene cada cuerpo geométrico.

¿Qué podemos observar en este diagrama? ¿Qué cuerpo geométrico será? Como vemos, está formado por triángulos que son las caras del cuerpo. El triángulo que se encuentra en el medio es la base de la figura y el resto serán las caras laterales. El cuerpo geométrico que cumple con estas características es la pirámide triangular.

¡A practicar!

  1. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cono.
  2. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Una pirámide cuadrangular.
  3. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cubo.

Relación de los cuerpos geométricos y las figuras planas

Las caras de los cuerpos geométricos están formadas por figuras planas. Si observamos una caja de zapatos con la tapa al frente, notaremos que la figura plana es un rectángulo. ¿Qué pasará con la forma de las caras si la apoyamos en la mesa?

La forma de las caras también son rectángulos, entonces, la caja en forma de prisma con caras rectangulares está relacionada directamente con la figura plana llamada rectángulo.

Pirámide del Louvre

El museo de Louvre en París es uno de los museos más importantes de Francia y en su entrada se encuentra una pirámide de cristal, justo en el patio del palacio y en frente al jardín de las Tullerías. La diseñó Ieoh Ming Pei y tiene las mismas medidas que la pirámide de Keops ubicada en Egipto. Este monumento con forma de pirámide cuadrangular posee todas sus caras triangulares cubiertas por 673 placas de vidrio con formas de triángulos y rombos.

¡Cuenta caras, vértices y aristas!

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 10 vértices y 15 aristas.
  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 8 vértices y 12 aristas.

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    8 caras, 12 vértices y 18 aristas.

 

RECURSOS PARA DOCENTES

Artículo “Prismas”

Este recurso le permitirá obtener más información sobre los prismas y sus características.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes.”

Este artículo le permitirá profundizar sobre la manera en que se generan los cuerpos de redondos y las características de los mismos.

VER

CAPÍTULO 3 / TEMA 1

¿Qué son las fracciones?

Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales. 

Partes de una fracción

Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.

Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.

 

Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción \frac{1}{2} también la podríamos expresar como 1/2.

Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.

La expresión 1/2 de pizza sería lo mismo que dividir la pizza en dos partes iguales y tomar una de esas partes. En la cocina se emplean fracciones para hablar de unidades de medición como tazas de ingrediente, por ejemplo: 1/2 de taza de harina, 1/3 de taza de agua, etc. Recuerda que el denominador indica cuántas veces se ha dividido algo en partes iguales (una taza, un litro, una naranja…).
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).

VER INFOGRAFÍA

Lectura de fracciones

Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.

Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:

Partes que se divide del entero Nombre
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, \frac{}{}\frac{1}{2} se lee como “un medio”. Observemos otros ejemplos:

a) \frac{2}{3} se lee “dos tercios”.

b) \frac{6}{8} se lee “seis octavos”.

c) \frac{15}{30} se lee “quince treintavos”.

d) \frac{12}{23} se lee “doce veintitresavos”.

e) \frac{32}{40} se lee “treinta y dos cuarentavos”.

f) \frac{97}{100} se lee “noventa y siete centavos”.

¿Sabías qué?
Los centavos también son llamados céntimos.

Origen muy antiguo

Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.

Relación de las fracciones y la división

Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; \frac{a}{b} es equivalente a a\div b. Por lo tanto, \frac{1}{2} es igual a 1\div 2.

En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.

¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.

Aplicación en la vida cotidiana de las fracciones

El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.

Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.

Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.

En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.

Además de sus múltiples aplicaciones en los cálculos matemáticos, las fracciones se emplean en situaciones cotidianas de la vida como lo son las mediciones. También se usan en gráficos que permiten comprender datos de manera más simple. Muchos países del mundo las emplean en sus monedas y ciertos dispositivos usan escalas expresadas en fracciones.
¡A practicar!

1. ¿Cómo se leen las siguientes fracciones?

a) \frac{5}{3}

Solución
Cinco tercios.

b) \frac{1}{100}

Solución
Un centavo.

c) \frac{23}{40}

Solución
Veintitrés cuarentavos.

d) \frac{3}{2}

Solución
Tres medios.

e) \frac{2}{5}

Solución
Dos quintos.

f) \frac{12}{11}

Solución
Doce onceavos.

g) \frac{7}{10}

Solución
Siete décimos.

h) \frac{11}{6}

Solución
Once sextos.

i) \frac{13}{4}

Solución
Trece cuartos.

j) \frac{58}{7}

Solución
Cincuenta y ocho séptimos.

2. ¿Cómo se escriben en número estas fracciones?

a) Nueve décimos.

Solución
\frac{9}{10}

b) Catorce novenos.

Solución
\frac{14}{9}

c) Setenta y tres centavos.

Solución
\frac{73}{100}

d) Ochenta y ocho novenos.

Solución
\frac{88}{9}

RECURSOS PARA DOCENTES

Video “Fracciones decimales”

Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.

VER

Artículo “La clasificación de los números”

El presente artículo permite indagar más sobre los diferentes tipos de números y sus características principales.

VER

Enciclopedia “Matemáticas Primaria”

En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.

VER

CAPÍTULO 2 / TEMA 4 (REVISIÓN)

OPERACIONES | ¿QUÉ APRENDIMOS?

Adición y sustracción

La matemática presenta cuatro operaciones básicas: adición o suma, sustracción o resta, multiplicación y división. La adición consiste en combinar dos o más números para obtener un total. Esta operación emplea el símbolo “+” y tiene dos elementos: los sumandos, que son los números que se van a sumar, y la suma, que consiste en el resultado en sí. La sustracción, por su parte, es una operación que consiste en quitar una cantidad a otra, por esto es considerada como la operación inversa a la adición, y emplea el símbolo “−”. Los elementos de una resta son: el minuendo que es el número al que se le va a quitar la cantidad, el sustraendo que es el número que resta y la diferencia que es el resultado de la operación.

El método por reagrupación permite resolver problemas de adición y sustracción en función de los valores posicionales de los números.

 

Multiplicación y división

La multiplicación y la división son otras operaciones fundamentales de la matemática. Se dice que la multiplicación es una suma abreviada porque permite sumar tantas veces un número como indique otro, a menudo se usa la equis (x) para indicar esta operación pero también se usa el punto (·). Está formada por los factores, que son los números que se multiplican y por el producto que es el resultado de dicha operación. Por otro lado, la división es la operación opuesta a la multiplicación y consiste en repartir grupos de elementos en partes iguales. Su símbolo es “÷” y sus elementos principales son: el dividendo, que es el número que se reparte; el divisor, que es el número que indica las partes en las que se va a dividir el dividendo; el cociente, que es el resultado; y el resto, que es la cantidad que no se puede dividir.

Para resolver divisiones es muy importante dominar muy bien las multiplicaciones.

 

Operaciones combinadas

Las operaciones combinadas son aquellas en las que aparecen dos o más operaciones matemáticas. Aunque pueden incluir símbolos como los paréntesis, corchetes y llaves, cuando se aplican a números naturales estos símbolos no son necesarios. Para resolver cálculos combinados de suma y resta, se resuelven los números de izquierda a derecha en función de la operación que se indique. Cuando existan operaciones combinadas que además de suma o resta incluyan multiplicación, división o ambas, se resuelven las multiplicaciones y divisiones primero para luego sumar o restar de la manera mencionada anteriormente.

En las operaciones combinadas primero se resuelven las multiplicaciones y divisiones, después se resuelven sumas o restas.

CAPÍTULO 2 / TEMA 2

Multiplicación y división

La multiplicación y la división son operaciones básicas de la matemática. La primera consiste básicamente en sumar varias veces un mismo número y la segunda, en cambio, consiste en repartir cantidades. Ambas están muy relacionadas entre sí y su manejo es necesario para resolver otros tipos de problemas.

Elementos de la multiplicación

La multiplicación es una operación en la que se suma tantas veces un número como indica otro número, por ejemplo, 3 x 4 = 12 se puede representar como 3 + 3 + 3 + 3 = 12. El signo usado en la multiplicación es “x” y se lee “por”. Los elementos principales de una multiplicación son:

  • Factores o coeficientes: son los números que se multiplican, estos son multiplicando y multiplicador. El multiplicando es el número a sumar y el multiplicador es el número de veces que se suma al multiplicando. En la multiplicación 3 x 4 = 12, el número 3 es el multiplicando y el 4 corresponde al multiplicador.
  • Producto: es el resultado de la multiplicación de dos o más factores. Hay ocasiones en las que las multiplicaciones son largas y deben realizarse por medio de la suma de productos parciales.

¿Sabías qué?
En la multiplicación además de la equis también suele usarse el punto “·” como símbolo.
La multiplicación tiene la finalidad de calcular el producto o resultado que se obtiene de sumar el multiplicando tantas veces por sí mismo como indique el multiplicador. En estas operaciones, cuando el multiplicador es mayor a una cifra se requieren de productos parciales que se sumarán para obtener el resultado final de la multiplicación.

Propiedades de la multiplicación

Son cuatro propiedades: la conmutativa, la asociativa, la distributiva y la del elemento neutro.

Propiedad conmutativa

Esta propiedad permite que al multiplicar dos números el resultado sea el mismo sin importar el orden de los factores. Por ejemplo:

3 x 10 = 30
10 x 3 = 30

Por lo tanto, 3 x 10 = 10 x 3. Observa:

Propiedad asociativa

Esta propiedad permite que al multiplicar tres o más factores el producto siempre sea el mismo, sin importar como se agrupen estos. Por ejemplo, 2 x 4 x 6 se puede agrupar de estas formas:

(2 x 4) x 6 = x 6 = 48
2 x (4 x 6) = 2 x 24 = 48

Por lo tanto, (2 x 4) x 6 = 2 x (4 x 6). Observa:

Propiedad distributiva

Esta propiedad permite que la suma de dos o más números multiplicada por otro número sea igual a la multiplicación de ese número por cada elemento de la suma. Por ejemplo:

Elemento neutro

El uno es el elemento neutro de la multiplicación, cualquier número multiplicado por él será igual a sí mismo. Por ejemplo:

0 x 1 = 0
3 x 1 = 3
10 x 1 =10
113 x 1 = 113

¿Sabías qué?
La propiedad distributiva también puede aplicarse a números que se restan.

Modelos de multiplicación

Una multiplicación es una suma abreviada y puede ser representada a través del modelo grupal, modelo lineal y modelo geométrico. Estas son diferentes formas de dar sentido a las multiplicaciones y se pueden aplicar en situaciones simples de la vida.

Modelo grupal

En este modelo se construyen secuencias con la misma cantidad de elementos, estos grupos de elementos representan la multiplicación.

Observa la representación del modelo en los siguientes ejemplos:

4 pelotas de tenis = 4
1 vez 4 = 4
1 x 4 = 4


4 + 4 = 8 raquetas de tenis
2 veces 4 = 8
2 x 4 = 8


4 + 4 + 4 = 12 pelotas de baloncesto
3 veces 4 = 12
3 x 4 = 12


¿Sabías qué?
En el modelo grupal, 3 x 4 se lee como “tres veces cuatro”.

Modelo lineal

En este modelo se emplea la semirrecta numérica para representar las multiplicaciones. Se comienza desde cero y se cuenta de acuerdo al número de elementos que tenga el conjunto a estudiar y al número de conjuntos. Por ejemplo:

Un árbol crece 2 metros cada año. ¿Cuántos metros crecerá en 4 años?

Planteado el sistema en la gráfica sería:
4 veces 2 = 8 metros
4 x 2 = 8

Modelo geométrico

En este método se comparan las cuadrículas en columnas y filas para representar una multiplicación. Se colocan tantas filas como indique el primer factor y el número de columnas será igual al segundo factor. Por ejemplo:

La multiplicación 3 x 4 = 12 se representa geométricamente de la siguiente manera:

Si se cuentan cada una de las cuadrículas se obtiene el resultado: 3 x 4 = 12

Pasos para resolver ejercicios con el algoritmo de la multiplicación

  1. Multiplica las unidades del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo. Será el primer producto parcial.
  2. Multiplica las decenas del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo pero con la diferencia que se debe desplazar una posición hacia la izquierda. Este será el segundo producto parcial.
  3. Suma los dos productos parciales. El número que obtengas será el total de la multiplicación.

– Resuelve la multiplicación 453 x 24

Por tratarse de una multiplicación con números grandes no sería tan fácil de resolver a través de los modelos grupal, lineal y geométrico. En estos casos debes emplear el algoritmo de la multiplicación y seguir los pasos mencionados anteriormente.

Para iniciar, el multiplicando y el multiplicador tienen que estar uno debajo del otro:

Luego multiplica las unidades del multiplicador por el multiplicando, es decir, multiplica 4 por 453:

Después multiplica las decenas del multiplicador por el multiplicando, es decir, 2 por 453:

Por último, suma los dos productos parciales que se calcularon para obtener el resultado de la multiplicación:

Elementos de la división

La división consiste en repartir grupos de elementos en partes iguales. Sus elementos principales son:

  • Dividendo: es el número que se va a dividir, es decir, la cantidad que se quiere repartir.
  • Divisor: es el número que divide, este indica cuántas veces se va a repartir el dividendo.
  • Cociente: es el resultado de la división.
  • Resto: es la cantidad que sobra de la división o la que no se puede repartir por ser menor que el divisor.

La división también se expresa con el símbolo “÷“, por ejemplo:

 

Método para comprobar una división

En una división se cumple la relación:

Dividendo = (cociente x divisor) + resto

De esta manera es muy fácil comprobar que una división esté correcta, solo se debe multiplicar el cociente que se obtuvo por el divisor y luego sumarle el resto. Si el resultado que se obtiene es igual al número del dividendo, entonces la división es correcta.

¿Sabías qué?
Cuando el resto de una división es igual a cero la división es exacta y cuando no lo es se denomina división inexacta.

Algoritmo de división

Los pasos para resolver una división son los siguientes:

– Resuelve la división 3.654 ÷ 25

  1. Lo primero que hay que hacer es tomar las dos primeras cifras del dividendo, si estas dos cifras forman un número menor que el divisor entonces se toman tres cifras del dividendo. En este caso, las dos primeras cifras son 36 y como es mayor que 25 se puede continuar.
  2. Divide el primer número del dividendo (si tomaste tres cifras, entonces divide los dos primero) entre el primer número del divisor. Coloca el número resultado en el cociente. Como el primer número del dividendo es 3 y el primer número del divisor es 2, el resultado de dividirlo es 1.
  3. Multiplica el número del cociente por el divisor y coloca el resultado debajo de los dos números seleccionados al principio del dividendo. Luego haz la resta y anota el resultado:
  4. Baja la cifra siguiente del dividendo.
    5. Si divides 11 entre 2, el resultado es 5; y cuando multiplicas 5 por 25 se obtiene 125 que no puede restarse con 115. Por esta razón, coloca 4 en el cociente y continúa con los pasos anteriores.
  5. Baja la cifra siguiente del dividendo.
  6. Si divides 15 entre 2, obtienes 6. Colócalo en el cociente y repite los pasos anteriores.
    Como no existen más cifras del dividendo para bajar y el número que se obtuvo de la resta es menor que el divisor, entonces se culmina el ejercicios: 3.654 ÷ 25 = 146 y sobraron 4 unidades sin repartir (resto).
¡A practicar!

1. Resuelve las siguientes multiplicaciones:

a) 296 x 18

Solución
5.328
b) 593 x 29
Solución
17.197
c) 332 x 74
Solución
24.568
d) 375 x 16
Solución
6.000
e) 613 x 59
Solución
36.167

2. Resuelve las siguientes divisiones:

a) 4.739 ÷ 88

Solución
Cociente = 53; Resto = 75
b) 7.049 ÷ 41
Solución
Cociente = 171; Resto = 38
c) 9.370 ÷ 58
Solución
Cociente = 161; Resto = 32
d) 3.830 ÷ 40
Solución
Cociente = 95; Resto = 30
e) 5.378 ÷ 65
Solución
Cociente = 82; Resto = 48

RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

El siguiente artículo muestra algunas sugerencias para que el aprendizaje de las tablas de multiplicar sea más sencillo y significativo.

VER

Artículo “La tabla pitagórica”

Este artículo muestra esta útil herramienta en las primeras etapas del aprendizaje de las tablas.

VER

Enciclopedia “Números”

Con esta enciclopedia podrán estudiar los principales sistemas de numeración y las operaciones básicas de las matemáticas.

VER